[{"title":"( 29 个子文件 12MB ) 哈佛大学能耗预测项目(Prediction of Buildings Energy Consumption)代码+分析过程","children":[{"title":"prediction_of_buildings_energy_consumption_notebook","children":[{"title":"Pics","children":[{"title":"energyWitness3.png <span style='color:#111;'> 331.44KB </span>","children":null,"spread":false},{"title":"energyWitness1.png <span style='color:#111;'> 140.30KB </span>","children":null,"spread":false},{"title":"Weekly-electricity.jpg <span style='color:#111;'> 132.77KB </span>","children":null,"spread":false},{"title":"chilled water and steam.jpg <span style='color:#111;'> 48.85KB </span>","children":null,"spread":false},{"title":"chilled water and steam consumption-with arrows.png <span style='color:#111;'> 305.58KB </span>","children":null,"spread":false},{"title":"exploratory analysis.jpg <span style='color:#111;'> 486.49KB </span>","children":null,"spread":false},{"title":"summary_knn.png <span style='color:#111;'> 60.59KB </span>","children":null,"spread":false},{"title":"summary_hourly2.png <span style='color:#111;'> 39.07KB </span>","children":null,"spread":false},{"title":"summary_svr.png <span style='color:#111;'> 148.12KB </span>","children":null,"spread":false},{"title":"summary_daily2.png <span style='color:#111;'> 54.81KB </span>","children":null,"spread":false},{"title":"cw and steam supply.png <span style='color:#111;'> 2.36MB </span>","children":null,"spread":false},{"title":"summary_rf.png <span style='color:#111;'> 59.21KB </span>","children":null,"spread":false},{"title":"summary_lr.png <span style='color:#111;'> 230.68KB </span>","children":null,"spread":false},{"title":"hourly electricity.png <span style='color:#111;'> 283.03KB </span>","children":null,"spread":false},{"title":"summary_gp.png <span style='color:#111;'> 199.64KB </span>","children":null,"spread":false},{"title":"gp_daily steam.png <span style='color:#111;'> 97.77KB </span>","children":null,"spread":false},{"title":"results_hourlyElectricity.png <span style='color:#111;'> 20.36KB </span>","children":null,"spread":false}],"spread":false},{"title":"Part 4.4&4.5 Prediction-Random Forests and K-Nearest Neighbours-DEC10.ipynb <span style='color:#111;'> 1.62MB </span>","children":null,"spread":false},{"title":"Part 1-3 Project Overview, Data Wrangling and Exploratory Analysis-DEC10.ipynb <span style='color:#111;'> 4.98MB </span>","children":null,"spread":false},{"title":"Part 5-7 Summary, Conclusion and Discussion-DEC10.ipynb <span style='color:#111;'> 9.53KB </span>","children":null,"spread":false},{"title":"Part 4.3 Prediction-Gaussian Process Regression-DEC10.ipynb <span style='color:#111;'> 1.88MB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"Part 4.4&4.5 Prediction-Random Forests and K-Nearest Neighbours-DEC10-checkpoint.ipynb <span style='color:#111;'> 1.62MB </span>","children":null,"spread":false},{"title":"Part 4.3 Prediction-Gaussian Process Regression-DEC10-checkpoint.ipynb <span style='color:#111;'> 1.88MB </span>","children":null,"spread":false},{"title":"Part 1-3 Project Overview, Data Wrangling and Exploratory Analysis-DEC10-checkpoint.ipynb <span style='color:#111;'> 4.98MB </span>","children":null,"spread":false},{"title":"Part 4.1&4.2 Linear Regression and Support Vector Regression-checkpoint.ipynb <span style='color:#111;'> 2.03MB </span>","children":null,"spread":false},{"title":"Part 5-7 Summary, Conclusion and Discussion-DEC10-checkpoint.ipynb <span style='color:#111;'> 9.53KB </span>","children":null,"spread":false},{"title":"linear_regression-final-Copy0-checkpoint.ipynb <span style='color:#111;'> 2.03MB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 34B </span>","children":null,"spread":false},{"title":"Part 4.1&4.2 Linear Regression and Support Vector Regression.ipynb <span style='color:#111;'> 2.03MB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]