北邮数值与符号计算实验 数值积分

上传者: fzu031002319 | 上传时间: 2018-06-12 17:05:30 | 文件大小: 217KB | 文件类型: docx
1.1 double gauss_ch1(double(*f)(double), int n);求积分∫_(-1)^1 f(x)dx/√(1-x^2 ) 实现n点Gauss-Chebyeshev积分公式;返回积分的近似值。 在区间[-1,1]上关于权函数1/√(1-x^2 )的正交多项为T_n (x)=cos(narccos(x)),T_n (x)在[-1,1]上的n个根是x_k=cos⁡((2k-1)/2n π),k=1,…,n. n点Gauss-Chebyeshev积分公式为∫_(-1)^1 f(x)dx/√(1-x^2 )≈π/n ∑_(k=1)^n f(cos⁡((2k-1)/2n π)) 1.2 double gauss_ch2(double(*f)(double), int n); 求积分∫_(-1)^1 √(1-x^2 ) f(x)dx 实现n点Gauss-Chebyeshev II型积分公式;返回积分的近似值。 在区间[-1,1]上关于权函数√(1-x^2 )的正交多项为U_n (x)=sin⁡((n+1)arccos⁡(x))/sin⁡(arccos⁡(x)) ,U_n (x)在[-1,1]上的n个根是x_k=cos⁡(kπ/(n+1)),k=1,…,n. n点Gauss-Chebyeshev II型积分公式为 ∫_(-1)^1 √(1-x^2 ) f(x)dx≈π/(n+1) ∑_(k=1)^n sin^2 (kπ/(n+1))f(cos⁡(kπ/(n+1))) 1.3 double comp_trep(double (*f)(double), double a, double b);求积分∫_a^b f(x)dx 函数实现逐次减半法复化梯形公式;返回积分的近似值。 1.4 double romberg(double (*f)(double), double a, double b); 求积分∫_a^b f(x)dx 函数实现Romberg积分法;返回积分的近似值。 1.5 double gauss_leg_9(double (*f));求积分∫_(-1)^1 f(x)dx 实现9点Gauss-Legendre求积公式。 使用上面实现的各种求积方法求下面的积分:∫_(-1)^1 e^x √(1-x^2 ) dx (=∫_(-1)^1 (xe^x)/√(1-x^2 ) dx) 使用第3,4,5个函数求积分:∫_0^(π/2) sin⁡x dx (=1)

文件下载

评论信息

  • liuguozhi4628 :
    一般吧,公式有点问题
    2019-06-15
  • 不同_寻常 :
    很有用,谢谢了
    2018-05-20

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明