随机森林原理解释及其中各个参数的含义中文解释 (1).zip

上传者: evangelinejj | 上传时间: 2021-09-22 17:25:42 | 文件大小: 17KB | 文件类型: ZIP
一 、RF原理解释: 首先,从给定的训练集通过多次随机的可重复的采样得到多个 bootstrap 数据集。接着,对每个 bootstrap 数据集构造一棵决策树,构造是通过迭代的将数据点分到左右两个子集中实现的,这个分割过程是一个搜索分割函数的参数空间以寻求最大信息增量意义下最佳参数的过程。然后,在每个叶节点处通过统计训练集中达到此叶节点的分类标签的直方图经验的估计此叶节点上的类分布。这样的迭代训练过程一直执行到用户设定的最大树深度(随机森林提出者Breiman采用的是ntree=500)或者直到不能通过继续分割获取更大的信息增益为止,网上的代码中作者都是对树的最大深度设置了最大值。

文件下载

资源详情

[{"title":"( 1 个子文件 17KB ) 随机森林原理解释及其中各个参数的含义中文解释 (1).zip","children":[{"title":"随机森林原理解释及其中各个参数的含义中文解释 (1).docx <span style='color:#111;'> 19.43KB </span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明