高度灵活和节能的深度神经网络加速器的架构设计

上传者: elec_zxm | 上传时间: 2022-08-19 16:06:09 | 文件大小: 13.02MB | 文件类型: DOCX
中文翻译:Architecture Design for Highly Flexible and Energy-Efficient Deep Neural Network Accelerators (翻译结果) 这个是我付费翻译的,但是也难免有些许错误。可以先看看摘要的翻译效果。 摘要 深度神经网络(DNNs)是现代人工智能(AI)的支柱。然而,由于其高计算复杂度和多样化的形状和尺寸,能够在广泛的dnn上实现高性能和能源效率的专用加速器对于使AI在现实世界的应用至关重要。为解决这个问题,本文提出Eyeriss,一种用于DNN处理的软硬件架构联合设计,针对性能、能源效率和灵活性进行了优化。Eyeriss具有一种新颖的RowStationary (RS)数据流,可在处理DNN时最小化数据移动,这是性能和能效的瓶颈。RS数据流支持高度并行处理,同时充分利用多级存储层次中的数据重用,以优化任何DNN形状和大小的整体系统能量效率。与现有的其他数据流相比,rs数据流的能量效率提高了1.4到2.5倍。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明