上传者: drjiachen
|
上传时间: 2022-02-21 20:04:02
|
文件大小: 3.56MB
|
文件类型: -
基于FPGA的神经网络硬件实现 本文主要的工作是研究神经网络的硬件实现问题,神经网络的硬件实现是神经网络研究的基本问题之一,在构造神经网络的实际应用系统时,必然要研究和解决其硬件实现的问题。神经网络专用硬件可提供高速度,并具有比通用串、并行机高得多的性能价格比,所以,特定应用下的高性能专用神经网络硬件是神经网络研究的热点。本文在比较了几种神经网络的可行性基础上,选用了BP神经网络作为硬件实现的神经网络模型。BP神经网络对输入输出非线性关系的高精度映射能力、较强的包容性、良好的推广能力和泛化能力,使得它们在实际应用中表现出了强大的生命力,成为当今的研究热点之一。作为BP神经网络中的激励函数之一的双曲正切S型(tan-s)函数适用于变化剧烈的场合,能够加快网络学习收敛速度。可编程技术的迅猛发展,在EDA技术中占有举足轻重的地位。