Composite kernel for hyperspectral classification tools

上传者: dakun218 | 上传时间: 2019-12-21 19:37:52 | 文件大小: 77KB | 文件类型: zip
Composite kernel 用于高光谱影像分类,其可以很好的用于空间特征与光谱特征相结合,提高高光谱影像分类精度。

文件下载

资源详情

[{"title":"( 33 个子文件 77KB ) Composite kernel for hyperspectral classification tools","children":[{"title":"ckl-toolbox","children":[{"title":"howto.txt <span style='color:#111;'> 416B </span>","children":null,"spread":false},{"title":"compute_x_to_K_sigma.m <span style='color:#111;'> 483B </span>","children":null,"spread":false},{"title":"test_gkl_ionosphere.m <span style='color:#111;'> 5.90KB </span>","children":null,"spread":false},{"title":"gkl_call.m <span style='color:#111;'> 2.93KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"ionosphere","children":[{"title":"ionosphere.mat <span style='color:#111;'> 91.41KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"compute_cost_svm.m <span style='color:#111;'> 925B </span>","children":null,"spread":false},{"title":"call_gkl.m <span style='color:#111;'> 2.93KB </span>","children":null,"spread":false},{"title":"licence.txt <span style='color:#111;'> 34.32KB </span>","children":null,"spread":false},{"title":"compute_golden_search.m <span style='color:#111;'> 1.60KB </span>","children":null,"spread":false},{"title":"compute_sum_K_sigma.m <span style='color:#111;'> 765B </span>","children":null,"spread":false},{"title":"gkl_svm.m <span style='color:#111;'> 16.60KB </span>","children":null,"spread":false},{"title":"compute_normal_vector.m <span style='color:#111;'> 3.14KB </span>","children":null,"spread":false},{"title":"gkl_svm_update.m <span style='color:#111;'> 7.19KB </span>","children":null,"spread":false},{"title":"kernel","children":[{"title":"UnitTraceNormalization.m <span style='color:#111;'> 948B </span>","children":null,"spread":false},{"title":"build_efficientK.m <span style='color:#111;'> 747B </span>","children":null,"spread":false},{"title":"WeightK.m <span style='color:#111;'> 1.15KB </span>","children":null,"spread":false},{"title":"CreateKernelListWithVariable.m <span style='color:#111;'> 877B </span>","children":null,"spread":false},{"title":"mklbuildkernel.m <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false},{"title":".svn","children":[{"title":"all-wcprops <span style='color:#111;'> 690B </span>","children":null,"spread":false},{"title":"prop-base","children":[{"title":"mklbuildkernel.m.svn-base <span style='color:#111;'> 30B </span>","children":null,"spread":false},{"title":"WeightK.m.svn-base <span style='color:#111;'> 30B </span>","children":null,"spread":false},{"title":"build_efficientK.m.svn-base <span style='color:#111;'> 79B </span>","children":null,"spread":false},{"title":"CreateKernelListWithVariable.m.svn-base <span style='color:#111;'> 30B </span>","children":null,"spread":false},{"title":"UnitTraceNormalization.m.svn-base <span style='color:#111;'> 30B </span>","children":null,"spread":false}],"spread":false},{"title":"props","children":null,"spread":false},{"title":"tmp","children":[{"title":"prop-base","children":null,"spread":false},{"title":"props","children":null,"spread":false},{"title":"text-base","children":null,"spread":false}],"spread":false},{"title":"text-base","children":[{"title":"mklbuildkernel.m.svn-base <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false},{"title":"WeightK.m.svn-base <span style='color:#111;'> 1.15KB </span>","children":null,"spread":false},{"title":"build_efficientK.m.svn-base <span style='color:#111;'> 747B </span>","children":null,"spread":false},{"title":"CreateKernelListWithVariable.m.svn-base <span style='color:#111;'> 877B </span>","children":null,"spread":false},{"title":"UnitTraceNormalization.m.svn-base <span style='color:#111;'> 948B </span>","children":null,"spread":false}],"spread":false},{"title":"entries <span style='color:#111;'> 903B </span>","children":null,"spread":false},{"title":"format <span style='color:#111;'> 2B </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"compute_grad_svm_class.m <span style='color:#111;'> 1.26KB </span>","children":null,"spread":false},{"title":"compute_normalized_sigma.m <span style='color:#111;'> 1.91KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明