Python全栈数据工程师养成攻略-全部代码

上传者: czyujian | 上传时间: 2021-05-12 16:05:04 | 文件大小: 5.72MB | 文件类型: RAR
Python全栈数据工程师养成攻略-全部代码

文件下载

资源详情

[{"title":"( 53 个子文件 5.72MB ) Python全栈数据工程师养成攻略-全部代码","children":[{"title":"README.md <span style='color:#111;'> 2.90KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"template.html <span style='color:#111;'> 408B </span>","children":null,"spread":false},{"title":"Parameter_Tuning_XGBoost_with_Example","children":[{"title":"Test_bCtAN1w.csv <span style='color:#111;'> 5.10MB </span>","children":null,"spread":false},{"title":"XGBoost_models.ipynb <span style='color:#111;'> 190.02KB </span>","children":null,"spread":false},{"title":"data_preparation.ipynb <span style='color:#111;'> 47.70KB </span>","children":null,"spread":false},{"title":"Train_nyOWmfK.csv <span style='color:#111;'> 12.09MB </span>","children":null,"spread":false}],"spread":true},{"title":"run.py <span style='color:#111;'> 717B </span>","children":null,"spread":false},{"title":"xyj.txt <span style='color:#111;'> 2.08MB </span>","children":null,"spread":false},{"title":"douban_movie_clean.txt <span style='color:#111;'> 5.33MB </span>","children":null,"spread":false}],"spread":true},{"title":".gitignore <span style='color:#111;'> 41B </span>","children":null,"spread":false},{"title":"codes","children":[{"title":"17_training_word_embedding.py <span style='color:#111;'> 925B </span>","children":null,"spread":false},{"title":"25_echarts_example.html <span style='color:#111;'> 936B </span>","children":null,"spread":false},{"title":"20_js_example.html <span style='color:#111;'> 1.69KB </span>","children":null,"spread":false},{"title":"28_d3_force_relation_graph.html <span style='color:#111;'> 2.10KB </span>","children":null,"spread":false},{"title":"8_douban_movie.py <span style='color:#111;'> 2.55KB </span>","children":null,"spread":false},{"title":"easy_blog_thinkphp","children":[{"title":"Application","children":[{"title":"index.html <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"Common","children":[{"title":"index.html <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"Common","children":[{"title":"index.html <span style='color:#111;'> 1B </span>","children":null,"spread":false}],"spread":false},{"title":"Conf","children":[{"title":"index.html <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"config.php <span style='color:#111;'> 213B </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 15B </span>","children":null,"spread":false},{"title":"Home","children":[{"title":"index.html <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"Common","children":[{"title":"index.html <span style='color:#111;'> 1B </span>","children":null,"spread":false}],"spread":false},{"title":"Controller","children":[{"title":"index.html <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"IndexController.class.php <span style='color:#111;'> 912B </span>","children":null,"spread":false}],"spread":false},{"title":"View","children":[{"title":"index.html <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"Index","children":[{"title":"post.html <span style='color:#111;'> 119B </span>","children":null,"spread":false},{"title":"index.html <span style='color:#111;'> 289B </span>","children":null,"spread":false},{"title":"list.html <span style='color:#111;'> 584B </span>","children":null,"spread":false}],"spread":false},{"title":"layout.html <span style='color:#111;'> 650B </span>","children":null,"spread":false}],"spread":false},{"title":"Model","children":[{"title":"index.html <span style='color:#111;'> 1B </span>","children":null,"spread":false}],"spread":false},{"title":"Conf","children":[{"title":"index.html <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"config.php <span style='color:#111;'> 50B </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true}],"spread":true},{"title":"7_get_post_with_python.py <span style='color:#111;'> 995B </span>","children":null,"spread":false},{"title":"19_css_example.html <span style='color:#111;'> 3.66KB </span>","children":null,"spread":false},{"title":"easy_blog_flask","children":[{"title":"config.py <span style='color:#111;'> 102B </span>","children":null,"spread":false},{"title":"run.py <span style='color:#111;'> 2.07KB </span>","children":null,"spread":false},{"title":"templates","children":[{"title":"post.html <span style='color:#111;'> 167B </span>","children":null,"spread":false},{"title":"index.html <span style='color:#111;'> 351B </span>","children":null,"spread":false},{"title":"list.html <span style='color:#111;'> 373B </span>","children":null,"spread":false},{"title":"layout.html <span style='color:#111;'> 671B </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"21_jquery_example.html <span style='color:#111;'> 3.72KB </span>","children":null,"spread":false},{"title":"27_d3_second_example.html <span style='color:#111;'> 2.97KB </span>","children":null,"spread":false},{"title":"27_d3_first_example.html <span style='color:#111;'> 2.73KB </span>","children":null,"spread":false},{"title":"36_convolution_example.py <span style='color:#111;'> 1024B </span>","children":null,"spread":false},{"title":"11_manage_mysql_with_python.py <span style='color:#111;'> 2.18KB </span>","children":null,"spread":false},{"title":"5_xyj.py <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"32_sklearn_svm_iris_classification.py <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"14_explore_diamonds.R <span style='color:#111;'> 1.73KB </span>","children":null,"spread":false},{"title":"18_html_example.html <span style='color:#111;'> 2.64KB </span>","children":null,"spread":false},{"title":"32_sklearn_svm_example.py <span style='color:#111;'> 160B </span>","children":null,"spread":false},{"title":"miserables.json <span style='color:#111;'> 18.40KB </span>","children":null,"spread":false},{"title":"16_nlp_with_jieba.py <span style='color:#111;'> 2.37KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明