Python机器学习,源代码,课件

上传者: czyujian | 上传时间: 2022-06-08 14:08:18 | 文件大小: 10.17MB | 文件类型: ZIP
Python机器学习,源代码,课件

文件下载

资源详情

[{"title":"( 37 个子文件 10.17MB ) Python机器学习,源代码,课件","children":[{"title":"代码","children":[{"title":"第9章.py <span style='color:#111;'> 1.61KB </span>","children":null,"spread":false},{"title":"第15章.py <span style='color:#111;'> 845B </span>","children":null,"spread":false},{"title":"第10章.py <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"第13章.py <span style='color:#111;'> 2.87KB </span>","children":null,"spread":false},{"title":"第12章.py <span style='color:#111;'> 513B </span>","children":null,"spread":false},{"title":"第7章.py <span style='color:#111;'> 2.05KB </span>","children":null,"spread":false},{"title":"第3章.py <span style='color:#111;'> 8.49KB </span>","children":null,"spread":false},{"title":"第5章.py <span style='color:#111;'> 2.90KB </span>","children":null,"spread":false},{"title":"第14章.py <span style='color:#111;'> 4.13KB </span>","children":null,"spread":false},{"title":"第4章.py <span style='color:#111;'> 6.63KB </span>","children":null,"spread":false},{"title":"第17章.py <span style='color:#111;'> 238B </span>","children":null,"spread":false},{"title":"第16章.py <span style='color:#111;'> 884B </span>","children":null,"spread":false},{"title":"第2章.py <span style='color:#111;'> 6.52KB </span>","children":null,"spread":false},{"title":"第19章.py <span style='color:#111;'> 4.62KB </span>","children":null,"spread":false},{"title":"第8章.py <span style='color:#111;'> 1.76KB </span>","children":null,"spread":false},{"title":"第11章.py <span style='color:#111;'> 1.86KB </span>","children":null,"spread":false},{"title":"第6章.py <span style='color:#111;'> 5.42KB </span>","children":null,"spread":false},{"title":"第18章.py <span style='color:#111;'> 1.51KB </span>","children":null,"spread":false}],"spread":false},{"title":"机器学习","children":[{"title":"第7章 机器学习常用数据集.pptx <span style='color:#111;'> 382.46KB </span>","children":null,"spread":false},{"title":"第3章 Numpy.pptx <span style='color:#111;'> 103.38KB </span>","children":null,"spread":false},{"title":"第11章 线性判别算法.pptx <span style='color:#111;'> 561.33KB </span>","children":null,"spread":false},{"title":"第9章 逻辑回归.pptx <span style='color:#111;'> 1.71MB </span>","children":null,"spread":false},{"title":"第10章 神经网络.pptx <span style='color:#111;'> 994.74KB </span>","children":null,"spread":false},{"title":"第17章 SVD奇异值分解.pptx <span style='color:#111;'> 891.79KB </span>","children":null,"spread":false},{"title":"第6章 scikit-learn.pptx <span style='color:#111;'> 423.14KB </span>","children":null,"spread":false},{"title":"第12章 K最近邻分类.pptx <span style='color:#111;'> 375.79KB </span>","children":null,"spread":false},{"title":"第16章 PCA降维.pptx <span style='color:#111;'> 423.48KB </span>","children":null,"spread":false},{"title":"第8章 回归算法.pptx <span style='color:#111;'> 746.48KB </span>","children":null,"spread":false},{"title":"第4章 Pandas.pptx <span style='color:#111;'> 91.10KB </span>","children":null,"spread":false},{"title":"第5章 Matplotlib.pptx <span style='color:#111;'> 329.97KB </span>","children":null,"spread":false},{"title":"第1章 环境配置与学前知识.pptx <span style='color:#111;'> 167.40KB </span>","children":null,"spread":false},{"title":"第13章 决策树与随机森林.pptx <span style='color:#111;'> 343.38KB </span>","children":null,"spread":false},{"title":"第2章 Python基础知识.pptx <span style='color:#111;'> 118.81KB </span>","children":null,"spread":false},{"title":"第19章 深度学习框架应用.pptx <span style='color:#111;'> 1.59MB </span>","children":null,"spread":false},{"title":"第14章 朴素贝叶斯.pptx <span style='color:#111;'> 400.39KB </span>","children":null,"spread":false},{"title":"第18章 聚类.pptx <span style='color:#111;'> 343.74KB </span>","children":null,"spread":false},{"title":"第15章 支持向机.pptx <span style='color:#111;'> 1.20MB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

其他资源

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明