High-Precision, Consistent EKF-based Visual-Inertial Odometry.pdf

上传者: czjsr | 上传时间: 2021-05-28 16:20:21 | 文件大小: 735KB | 文件类型: PDF
In this paper, we focus on the problem of motion tracking in unknown environments using visual and inertial sensors.We term this estimation task visual-inertial odometry (VIO), in analogy to the well-known visual-odometry problem. We present a detailed study of EKF-based VIO algorithms, by comparing both their theoretical properties and empirical performance. We show that an EKF formulation where the state vector comprises a sliding window of poses (the MSCKF algorithm) attains better accuracy, consistency, and computational efficiency than the SLAM formulation of the EKF, in which the state vector contains the current pose and the features seen by the camera. Moreover, we prove that both types of EKF approaches are inconsistent, due to the way in which Jacobians are computed. Specifically, we show that the observability properties of the EKF’s linearized system models do not match those of the underlying system, which causes the filters to underestimate the uncertainty in the state estimates. Based on our analysis, we propose a novel, real-time EKF-based VIO algorithm, which achieves consistent estimation by (i) ensuring the correct observability properties of its linearized system model, and (ii) performing online estimation of the camera-to-IMU calibration parameters. This algorithm, which we term MSCKF 2.0, is shown to achieve accuracy and consistency higher than even an iterative, sliding-window fixed-lag smoother, in both Monte-Carlo simulations and real-world testing. I

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明