基于深度学习的图像识别应用研究

上传者: cyj2014go | 上传时间: 2019-12-21 19:37:15 | 文件大小: 3.84MB | 文件类型: pdf
重点研究了深度学习的特征提取,以及深度学习中三个重要的网络模型,分别是可以实现无监督特征学习的深度信念网络 (Deep Belief Network,DBN),图像识别任务中被广泛使用的卷积神经(Convolutional Neural Network,CNN),以及可以实现序列数据学习的循环神 经网络(Recurrent Neural Network,RNN),对它们的网络结构和训练方法展开 深入的研究。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明