[{"title":"( 29 个子文件 39.59MB ) 吴恩达机器学习CS229讲义译文","children":[{"title":"译文","children":[{"title":"cs229-notes9.docx <span style='color:#111;'> 508.82KB </span>","children":null,"spread":false},{"title":"cs229-notes7a.docx <span style='color:#111;'> 258.81KB </span>","children":null,"spread":false},{"title":"cs229-notes5.docx <span style='color:#111;'> 182.94KB </span>","children":null,"spread":false},{"title":"cs229-notes7b.docx <span style='color:#111;'> 196.34KB </span>","children":null,"spread":false},{"title":"cs229-notes2.docx <span style='color:#111;'> 1.82MB </span>","children":null,"spread":false},{"title":"cs229-notes11.docx <span style='color:#111;'> 175.04KB </span>","children":null,"spread":false},{"title":"cs229-notes10.docx <span style='color:#111;'> 205.36KB </span>","children":null,"spread":false},{"title":"cs229-notes12.docx <span style='color:#111;'> 521.80KB </span>","children":null,"spread":false},{"title":"cs229-notes3.docx <span style='color:#111;'> 22.41MB </span>","children":null,"spread":false},{"title":"cs229-notes4.docx <span style='color:#111;'> 349.74KB </span>","children":null,"spread":false},{"title":"cs229-notes1.docx <span style='color:#111;'> 1.44MB </span>","children":null,"spread":false},{"title":"cs229-notes6.docx <span style='color:#111;'> 152.96KB </span>","children":null,"spread":false},{"title":"cs229-notes8.docx <span style='color:#111;'> 636.61KB </span>","children":null,"spread":false}],"spread":false},{"title":"笔记","children":[{"title":"(13)因子分析.pdf <span style='color:#111;'> 952.74KB </span>","children":null,"spread":false},{"title":"(3)支持向量机SVM(上).pdf <span style='color:#111;'> 877.86KB </span>","children":null,"spread":false},{"title":"(15)典型关联分析.pdf <span style='color:#111;'> 961.54KB </span>","children":null,"spread":false},{"title":"(6)K-means聚类算法.pdf <span style='color:#111;'> 532.76KB </span>","children":null,"spread":false},{"title":"(4)支持向量机SVM(下).pdf <span style='color:#111;'> 1.15MB </span>","children":null,"spread":false},{"title":"(1)线性回归、logistic回归和一般回归.pdf <span style='color:#111;'> 842.55KB </span>","children":null,"spread":false},{"title":"(9)在线学习.pdf <span style='color:#111;'> 530.77KB </span>","children":null,"spread":false},{"title":"(12)线性判别分析.pdf <span style='color:#111;'> 918.07KB </span>","children":null,"spread":false},{"title":"(11)独立成分分析.pdf <span style='color:#111;'> 905.68KB </span>","children":null,"spread":false},{"title":"(7)混合高斯模型和EM算法.pdf <span style='color:#111;'> 436.95KB </span>","children":null,"spread":false},{"title":"(10)主成分分析.pdf <span style='color:#111;'> 1.72MB </span>","children":null,"spread":false},{"title":"(5)规则化和模型选择.pdf <span style='color:#111;'> 895.02KB </span>","children":null,"spread":false},{"title":"(8)EM算法.pdf <span style='color:#111;'> 757.24KB </span>","children":null,"spread":false},{"title":"(2)判别模型、生成模型与朴素贝叶斯方法.pdf <span style='color:#111;'> 1.04MB </span>","children":null,"spread":false},{"title":"(16)偏最小二乘法回归.pdf <span style='color:#111;'> 279.08KB </span>","children":null,"spread":false},{"title":"(14)增强学习.pdf <span style='color:#111;'> 899.98KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]