上传者: cooc89
|
上传时间: 2022-01-30 11:02:22
|
文件大小: 2.73MB
|
文件类型: ZIP
我们提出了一种新的数据驱动算法,用可重用的时空流数据仓库合成高分辨率的流模拟。在我们的工作中,我们采用描述符学习方法来编码分辨率和数值粘度不同的uid区域之间的相似性。我们使用卷积神经网络从流体数据(如烟密度和流速)生成描述符。同时,我们提出了一种变形限制面片平流方法,它允许我们稳健地跟踪可变形的uid区域。在这个补丁平流的帮助下,我们从存储库的详细UID生成稳定的时空数据集。
然后,在运行新的模拟时,我们可以使用学习到的描述符快速定位合适的数据集。这使得我们的方法非常有效,并且与分辨率无关。我们将通过几个例子来证明,我们的方法产生的体积具有非常高的有效分辨率,以及非耗散的小尺度细节,这些细节自然地融入了底层水流的运动中。