svm分类器的实现 (matlab)

上传者: cheris_zhang | 上传时间: 2019-12-21 19:33:55 | 文件大小: 143KB | 文件类型: rar
数据挖掘中svm分类器的实现,在matlab中编写

文件下载

资源详情

[{"title":"( 39 个子文件 143KB ) svm分类器的实现 (matlab)","children":[{"title":"svm","children":[{"title":"svrplot.m <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"Optimiser","children":[{"title":"pr_loqo.c <span style='color:#111;'> 16.34KB </span>","children":null,"spread":false},{"title":"qp.c <span style='color:#111;'> 7.08KB </span>","children":null,"spread":false},{"title":"pr_loqo.h <span style='color:#111;'> 2.33KB </span>","children":null,"spread":false},{"title":"qp.dll <span style='color:#111;'> 48.00KB </span>","children":null,"spread":false},{"title":"Makefile <span style='color:#111;'> 27B </span>","children":null,"spread":false}],"spread":true},{"title":"cmap.mat <span style='color:#111;'> 1.69KB </span>","children":null,"spread":false},{"title":"svtol.m <span style='color:#111;'> 401B </span>","children":null,"spread":false},{"title":"uiregress.mat <span style='color:#111;'> 11.37KB </span>","children":null,"spread":false},{"title":"Contents.m <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false},{"title":"svcplot.m <span style='color:#111;'> 3.04KB </span>","children":null,"spread":false},{"title":"Examples","children":[{"title":"Classification","children":[{"title":"linsep.mat <span style='color:#111;'> 672B </span>","children":null,"spread":false},{"title":"iris2v13.mat <span style='color:#111;'> 2.63KB </span>","children":null,"spread":false},{"title":"nlinsep.mat <span style='color:#111;'> 712B </span>","children":null,"spread":false},{"title":"iris3v12.mat <span style='color:#111;'> 2.63KB </span>","children":null,"spread":false},{"title":"iris1v23.mat <span style='color:#111;'> 2.63KB </span>","children":null,"spread":false}],"spread":true},{"title":"Regression","children":[{"title":"titanium.mat <span style='color:#111;'> 1.07KB </span>","children":null,"spread":false},{"title":"example.mat <span style='color:#111;'> 744B </span>","children":null,"spread":false},{"title":"sinc.mat <span style='color:#111;'> 1.03KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"uiclass.m <span style='color:#111;'> 5.26KB </span>","children":null,"spread":false},{"title":"uiregress.m <span style='color:#111;'> 5.50KB </span>","children":null,"spread":false},{"title":"svrerror.m <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"svcinfo.m <span style='color:#111;'> 1.20KB </span>","children":null,"spread":false},{"title":"svkernel.m <span style='color:#111;'> 2.55KB </span>","children":null,"spread":false},{"title":"centrefig.m <span style='color:#111;'> 144B </span>","children":null,"spread":false},{"title":"svdatanorm.m <span style='color:#111;'> 1.27KB </span>","children":null,"spread":false},{"title":"nobias.m <span style='color:#111;'> 457B </span>","children":null,"spread":false},{"title":"svc.m <span style='color:#111;'> 2.62KB </span>","children":null,"spread":false},{"title":"binomial.m <span style='color:#111;'> 371B </span>","children":null,"spread":false},{"title":"svroutput.m <span style='color:#111;'> 711B </span>","children":null,"spread":false},{"title":"uiclass.mat <span style='color:#111;'> 12.30KB </span>","children":null,"spread":false},{"title":"newsvm.zip <span style='color:#111;'> 74.74KB </span>","children":null,"spread":false},{"title":"softmargin.m <span style='color:#111;'> 312B </span>","children":null,"spread":false},{"title":"svr.m <span style='color:#111;'> 3.89KB </span>","children":null,"spread":false},{"title":"svcoutput.m <span style='color:#111;'> 973B </span>","children":null,"spread":false},{"title":"qp.dll <span style='color:#111;'> 48.00KB </span>","children":null,"spread":false},{"title":"SVM工具箱使用方法.doc <span style='color:#111;'> 175.00KB </span>","children":null,"spread":false},{"title":"svcerror.m <span style='color:#111;'> 837B </span>","children":null,"spread":false},{"title":"README.TXT <span style='color:#111;'> 2.58KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

  • fanpengcs :
    不错,谢谢分享!!
    2018-08-10
  • huntersdg :
    SVM是很经典的分类器,但原始的算法是二分类,不知版主的是否可以实现多分类问题?
    2018-04-17
  • Hannah :
    不错,谢谢分享!!
    2017-06-10
  • abc1035144364 :
    还在学习过程中
    2017-05-23
  • chenxjchenxiaoj :
    可以学到相关的知识
    2016-11-08

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明