基于matlab的CNN-LSTM深度学习网络训练,+含代码操作演示视频

上传者: ccsss22 | 上传时间: 2022-05-12 21:05:38 | 文件大小: 32.44MB | 文件类型: RAR
基于matlab的CNN-LSTM深度学习网络训练,有用的特征从CNN层中提取,然后反馈到LSTM层,该层形成预测的上下文顺序+含代码操作演示视频 运行注意事项:使用matlab2021a或者更高版本测试,运行里面的Runme.m文件,不要直接运行子函数文件。运行时注意matlab左侧的当前文件夹窗口必须是当前工程所在路径。 具体可观看提供的操作录像视频跟着操作。

文件下载

资源详情

[{"title":"( 40 个子文件 32.44MB ) 基于matlab的CNN-LSTM深度学习网络训练,+含代码操作演示视频","children":[{"title":"1基于matlab的CNN-LSTM深度学习网络训练,有用的特征从CNN层中提取,然后反馈到LSTM层,该层形成预测的上下文顺序","children":[{"title":"re.mat <span style='color:#111;'> 4.54KB </span>","children":null,"spread":false},{"title":"train_y.txt <span style='color:#111;'> 1.91MB </span>","children":null,"spread":false},{"title":"pred.mat <span style='color:#111;'> 11.57KB </span>","children":null,"spread":false},{"title":"func","children":[{"title":"gate_ff.m <span style='color:#111;'> 204B </span>","children":null,"spread":false},{"title":"tanh_ff.m <span style='color:#111;'> 198B </span>","children":null,"spread":false},{"title":"tanh_ln.m <span style='color:#111;'> 78B </span>","children":null,"spread":false},{"title":"adam.m <span style='color:#111;'> 1.81KB </span>","children":null,"spread":false},{"title":"backprop.m <span style='color:#111;'> 373B </span>","children":null,"spread":false},{"title":"cnn_lstm_bp.m <span style='color:#111;'> 3.41KB </span>","children":null,"spread":false},{"title":"net_ff.m <span style='color:#111;'> 3.42KB </span>","children":null,"spread":false},{"title":"error_multiclass.m <span style='color:#111;'> 556B </span>","children":null,"spread":false},{"title":"train_cnn_lstm.m <span style='color:#111;'> 2.35KB </span>","children":null,"spread":false},{"title":"PrepareData_Char_LSTM.m <span style='color:#111;'> 700B </span>","children":null,"spread":false},{"title":"rotate_data.m <span style='color:#111;'> 940B </span>","children":null,"spread":false},{"title":"net_bp.m <span style='color:#111;'> 3.45KB </span>","children":null,"spread":false},{"title":"cnnConvolve.m <span style='color:#111;'> 3.30KB </span>","children":null,"spread":false},{"title":"net_init_char_lstm.m <span style='color:#111;'> 697B </span>","children":null,"spread":false},{"title":"softmaxlogloss.m <span style='color:#111;'> 605B </span>","children":null,"spread":false},{"title":"input_ff.m <span style='color:#111;'> 246B </span>","children":null,"spread":false},{"title":"soft_ff.m <span style='color:#111;'> 406B </span>","children":null,"spread":false},{"title":"soft_bp.m <span style='color:#111;'> 384B </span>","children":null,"spread":false},{"title":"average_gradients.m <span style='color:#111;'> 647B </span>","children":null,"spread":false},{"title":"test_lstm.m <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"Copy_of_lstm_bp.m <span style='color:#111;'> 2.12KB </span>","children":null,"spread":false},{"title":"concat_data.m <span style='color:#111;'> 399B </span>","children":null,"spread":false},{"title":"hidden_bp.m <span style='color:#111;'> 138B </span>","children":null,"spread":false},{"title":"input_bp.m <span style='color:#111;'> 260B </span>","children":null,"spread":false},{"title":"cnnnet_init.m <span style='color:#111;'> 498B </span>","children":null,"spread":false},{"title":"gate_bp.m <span style='color:#111;'> 225B </span>","children":null,"spread":false},{"title":"sigmoid_ln.m <span style='color:#111;'> 104B </span>","children":null,"spread":false},{"title":"softloglossbp.m <span style='color:#111;'> 305B </span>","children":null,"spread":false},{"title":"cnn_lstm_ff.m <span style='color:#111;'> 2.69KB </span>","children":null,"spread":false}],"spread":false},{"title":"example.mat <span style='color:#111;'> 15.54MB </span>","children":null,"spread":false},{"title":"操作录像0002.avi <span style='color:#111;'> 81.70MB </span>","children":null,"spread":false},{"title":"presentation.mat <span style='color:#111;'> 15.49MB </span>","children":null,"spread":false},{"title":"Runme_cnn_lstm.m <span style='color:#111;'> 2.16KB </span>","children":null,"spread":false},{"title":"dict.txt <span style='color:#111;'> 147B </span>","children":null,"spread":false},{"title":"test_x.txt <span style='color:#111;'> 1.07MB </span>","children":null,"spread":false},{"title":"test_y.txt <span style='color:#111;'> 1.07MB </span>","children":null,"spread":false},{"title":"train_x.txt <span style='color:#111;'> 1.91MB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明