SIFT特征最经典的paper中文和英文总结

上传者: babahealth | 上传时间: 2019-12-21 19:26:26 | 文件大小: 17.31MB | 文件类型: rar
其中包含了最为经典的文章,在会议论文集中的文章,和中文的相关文章,还有对SIFT特征的总结和概括,对于初步了解的人是最首要的选择,包括一些PCA-SIFT的文章,matlab代码

文件下载

资源详情

[{"title":"( 71 个子文件 17.31MB ) SIFT特征最经典的paper中文和英文总结","children":[{"title":"sift+pca-sift","children":[{"title":"sift代码2","children":[{"title":"siftread.m <span style='color:#111;'> 3.49KB </span>","children":null,"spread":false},{"title":"siftormx.c <span style='color:#111;'> 7.96KB </span>","children":null,"spread":false},{"title":"sift_demo4.m <span style='color:#111;'> 1.38KB </span>","children":null,"spread":false},{"title":"diffss.m <span style='color:#111;'> 2.73KB </span>","children":null,"spread":false},{"title":"tightsubplot.m <span style='color:#111;'> 5.02KB </span>","children":null,"spread":false},{"title":"siftdescriptor.m <span style='color:#111;'> 3.70KB </span>","children":null,"spread":false},{"title":"gaussianss.m <span style='color:#111;'> 7.73KB </span>","children":null,"spread":false},{"title":"siftmatch.c <span style='color:#111;'> 10.18KB </span>","children":null,"spread":false},{"title":"siftdescriptor.c <span style='color:#111;'> 16.05KB </span>","children":null,"spread":false},{"title":"imreadbw.m <span style='color:#111;'> 2.30KB </span>","children":null,"spread":false},{"title":"imsmooth.c <span style='color:#111;'> 3.87KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.94KB </span>","children":null,"spread":false},{"title":"sift_demo3.m <span style='color:#111;'> 1.70KB </span>","children":null,"spread":false},{"title":"bundle.m <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"sift_demo2.m <span style='color:#111;'> 4.20KB </span>","children":null,"spread":false},{"title":"plotsiftframe.m <span style='color:#111;'> 4.92KB </span>","children":null,"spread":false},{"title":"sift_demo5.m <span style='color:#111;'> 387B </span>","children":null,"spread":false},{"title":"siftlocalmax.c <span style='color:#111;'> 8.58KB </span>","children":null,"spread":false},{"title":"sift_overview.m <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false},{"title":"plotmatches.m <span style='color:#111;'> 9.77KB </span>","children":null,"spread":false},{"title":"TIMESTAMP <span style='color:#111;'> 219B </span>","children":null,"spread":false},{"title":"README <span style='color:#111;'> 1.92KB </span>","children":null,"spread":false},{"title":"plotsiftdescriptor.m <span style='color:#111;'> 5.34KB </span>","children":null,"spread":false},{"title":"doc","children":[{"title":"sift.tex <span style='color:#111;'> 21.30KB </span>","children":null,"spread":false},{"title":"bibliography.bib <span style='color:#111;'> 246B </span>","children":null,"spread":false},{"title":"visionlab.sty <span style='color:#111;'> 6.03KB </span>","children":null,"spread":false},{"title":"figures","children":[{"title":"sift-descriptor.aux <span style='color:#111;'> 8B </span>","children":null,"spread":false},{"title":"sift-descriptor.log <span style='color:#111;'> 13.12KB </span>","children":null,"spread":false},{"title":"warmread.sty <span style='color:#111;'> 47.42KB </span>","children":null,"spread":false},{"title":"sift-descriptor.wrm <span style='color:#111;'> 13B </span>","children":null,"spread":false},{"title":"sift-descriptor.pdf <span style='color:#111;'> 433.48KB </span>","children":null,"spread":false},{"title":"sift-descriptor-AI.bb <span style='color:#111;'> 550B </span>","children":null,"spread":false},{"title":"sift-descriptor.tex <span style='color:#111;'> 3.20KB </span>","children":null,"spread":false},{"title":"sift-descriptor-AI.pdf <span style='color:#111;'> 464.76KB </span>","children":null,"spread":false},{"title":"sift-descriptor-SAVED.tex <span style='color:#111;'> 3.20KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"siftrefinemx.m <span style='color:#111;'> 3.04KB </span>","children":null,"spread":false},{"title":"siftrefinemx.c <span style='color:#111;'> 8.79KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"circle.sift <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false},{"title":"landscape-b.jpg <span style='color:#111;'> 297.58KB </span>","children":null,"spread":false},{"title":"img5.jpg <span style='color:#111;'> 456.84KB </span>","children":null,"spread":false},{"title":"circle.pgm <span style='color:#111;'> 9.82KB </span>","children":null,"spread":false},{"title":"Thumbs.db <span style='color:#111;'> 26.00KB </span>","children":null,"spread":false},{"title":"box.pgm <span style='color:#111;'> 70.62KB </span>","children":null,"spread":false},{"title":"nest.png <span style='color:#111;'> 10.84KB </span>","children":null,"spread":false},{"title":"landscape-a.jpg <span style='color:#111;'> 268.66KB </span>","children":null,"spread":false},{"title":"box.sift <span style='color:#111;'> 227.59KB </span>","children":null,"spread":false},{"title":"img3.jpg <span style='color:#111;'> 454.06KB </span>","children":null,"spread":false},{"title":"nest2.bmp <span style='color:#111;'> 17.05KB </span>","children":null,"spread":false}],"spread":false},{"title":"Makefile <span style='color:#111;'> 2.33KB </span>","children":null,"spread":false},{"title":"sift_gendoc.css <span style='color:#111;'> 2.50KB </span>","children":null,"spread":false},{"title":"sift.m <span style='color:#111;'> 10.03KB </span>","children":null,"spread":false},{"title":"plotss.m <span style='color:#111;'> 2.67KB </span>","children":null,"spread":false},{"title":"siftlocalmax.m <span style='color:#111;'> 1.60KB </span>","children":null,"spread":false},{"title":"sift_compile.m <span style='color:#111;'> 1.64KB </span>","children":null,"spread":false},{"title":"sift_demo.m <span style='color:#111;'> 3.35KB </span>","children":null,"spread":false},{"title":"mexutils.c <span style='color:#111;'> 2.13KB </span>","children":null,"spread":false},{"title":"siftmatch.m <span style='color:#111;'> 2.86KB </span>","children":null,"spread":false}],"spread":false},{"title":"pca-sift","children":[{"title":"PCA-SIFT.doc <span style='color:#111;'> 61.50KB </span>","children":null,"spread":false},{"title":"19引用1PCA-SIFT.pdf <span style='color:#111;'> 616.91KB </span>","children":null,"spread":false},{"title":"pca.doc <span style='color:#111;'> 30.00KB </span>","children":null,"spread":false},{"title":"19引用1PCA-SIFT.doc <span style='color:#111;'> 26.00KB </span>","children":null,"spread":false}],"spread":true},{"title":"sift paper","children":[{"title":"SIFT特征匹配算法研究.pdf <span style='color:#111;'> 608.05KB </span>","children":null,"spread":false},{"title":"19Efficient Near-duplicate Duplicate Detection and Sub-Image Retrieval.pdf <span style='color:#111;'> 578.28KB </span>","children":null,"spread":false},{"title":"1Scale and Affine Invariant Interest Point Detectors.pdf <span style='color:#111;'> 1.51MB </span>","children":null,"spread":false},{"title":"基于图像特征点的提取匹配及应用.kdh <span style='color:#111;'> 3.21MB </span>","children":null,"spread":false},{"title":"3Distinctive Image Features from Scale-Invariant Keypoints .pdf <span style='color:#111;'> 788.84KB </span>","children":null,"spread":false},{"title":"sift讲义.pdf <span style='color:#111;'> 1.97MB </span>","children":null,"spread":false},{"title":"Local grayvalue invariants for image retrieval.pdf <span style='color:#111;'> 1.31MB </span>","children":null,"spread":false},{"title":"2Evaluation of Interest Point Detectors.pdf <span style='color:#111;'> 954.86KB </span>","children":null,"spread":false},{"title":"sift讲义.doc <span style='color:#111;'> 20.50KB </span>","children":null,"spread":false},{"title":"Feature Detection with Automatic Scale Selection .pdf <span style='color:#111;'> 4.69MB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

  • LINC任 :
    很好的收集资料,正在做毕设,初期学习很需要~
    2018-03-30
  • mountwzl :
    东西比较全,虽然有些我原来下过,不过你算是给了一个整理!
    2013-11-16
  • chenastraea :
    谢谢,包含的论文很全面,学习了。
    2013-10-15
  • c14876660 :
    包含的论文不错
    2013-03-05
  • jlhua666 :
    资料内容挺丰富的,paper不错,就是代码运行不通,还望楼主指点,能上传修改后的代码。谢谢!
    2011-11-29

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明