从头开始学机器学习:ML-From-Scratch

上传者: awsdfejfds | 上传时间: 2021-05-11 09:07:04 | 文件大小: 97KB | 文件类型: RAR
ML-From-Scratch 是一些基本的机器学习模型和算法的 Python 实现。 ML-From-Scratch 的目的不是产生尽可能优化和计算效率高的算法,而是以透明和可访问的方式展示它们的内部工作方式。

文件下载

资源详情

[{"title":"( 89 个子文件 97KB ) 从头开始学机器学习:ML-From-Scratch","children":[{"title":"ML-From-Scratch-master","children":[{"title":"MANIFEST.in <span style='color:#111;'> 29B </span>","children":null,"spread":false},{"title":"mlfromscratch","children":[{"title":"deep_learning","children":[{"title":"activation_functions.py <span style='color:#111;'> 1.95KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 42B </span>","children":null,"spread":false},{"title":"layers.py <span style='color:#111;'> 26.87KB </span>","children":null,"spread":false},{"title":"neural_network.py <span style='color:#111;'> 4.64KB </span>","children":null,"spread":false},{"title":"loss_functions.py <span style='color:#111;'> 1.02KB </span>","children":null,"spread":false},{"title":"optimizers.py <span style='color:#111;'> 4.66KB </span>","children":null,"spread":false}],"spread":true},{"title":"utils","children":[{"title":"misc.py <span style='color:#111;'> 3.68KB </span>","children":null,"spread":false},{"title":"data_manipulation.py <span style='color:#111;'> 4.97KB </span>","children":null,"spread":false},{"title":"data_operation.py <span style='color:#111;'> 2.19KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 85B </span>","children":null,"spread":false},{"title":"kernels.py <span style='color:#111;'> 398B </span>","children":null,"spread":false}],"spread":true},{"title":"unsupervised_learning","children":[{"title":"dcgan.py <span style='color:#111;'> 6.23KB </span>","children":null,"spread":false},{"title":"gaussian_mixture_model.py <span style='color:#111;'> 4.61KB </span>","children":null,"spread":false},{"title":"principal_component_analysis.py <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"k_means.py <span style='color:#111;'> 3.45KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 358B </span>","children":null,"spread":false},{"title":"partitioning_around_medoids.py <span style='color:#111;'> 4.79KB </span>","children":null,"spread":false},{"title":"autoencoder.py <span style='color:#111;'> 3.92KB </span>","children":null,"spread":false},{"title":"fp_growth.py <span style='color:#111;'> 7.48KB </span>","children":null,"spread":false},{"title":"generative_adversarial_network.py <span style='color:#111;'> 5.71KB </span>","children":null,"spread":false},{"title":"genetic_algorithm.py <span style='color:#111;'> 4.13KB </span>","children":null,"spread":false},{"title":"apriori.py <span style='color:#111;'> 7.72KB </span>","children":null,"spread":false},{"title":"dbscan.py <span style='color:#111;'> 3.97KB </span>","children":null,"spread":false},{"title":"restricted_boltzmann_machine.py <span style='color:#111;'> 3.28KB </span>","children":null,"spread":false}],"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"supervised_learning","children":[{"title":"regression.py <span style='color:#111;'> 10.25KB </span>","children":null,"spread":false},{"title":"decision_tree.py <span style='color:#111;'> 10.87KB </span>","children":null,"spread":false},{"title":"random_forest.py <span style='color:#111;'> 3.60KB </span>","children":null,"spread":false},{"title":"adaboost.py <span style='color:#111;'> 5.50KB </span>","children":null,"spread":false},{"title":"multi_class_lda.py <span style='color:#111;'> 2.57KB </span>","children":null,"spread":false},{"title":"support_vector_machine.py <span style='color:#111;'> 3.93KB </span>","children":null,"spread":false},{"title":"perceptron.py <span style='color:#111;'> 2.62KB </span>","children":null,"spread":false},{"title":"logistic_regression.py <span style='color:#111;'> 2.01KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 895B </span>","children":null,"spread":false},{"title":"multilayer_perceptron.py <span style='color:#111;'> 4.29KB </span>","children":null,"spread":false},{"title":"xgboost.py <span style='color:#111;'> 3.64KB </span>","children":null,"spread":false},{"title":"naive_bayes.py <span style='color:#111;'> 3.28KB </span>","children":null,"spread":false},{"title":"neuroevolution.py <span style='color:#111;'> 5.87KB </span>","children":null,"spread":false},{"title":"gradient_boosting.py <span style='color:#111;'> 4.18KB </span>","children":null,"spread":false},{"title":"k_nearest_neighbors.py <span style='color:#111;'> 1.24KB </span>","children":null,"spread":false},{"title":"bayesian_regression.py <span style='color:#111;'> 4.49KB </span>","children":null,"spread":false},{"title":"particle_swarm_optimization.py <span style='color:#111;'> 5.84KB </span>","children":null,"spread":false},{"title":"linear_discriminant_analysis.py <span style='color:#111;'> 1.36KB </span>","children":null,"spread":false}],"spread":false},{"title":"examples","children":[{"title":"random_forest.py <span style='color:#111;'> 738B </span>","children":null,"spread":false},{"title":"adaboost.py <span style='color:#111;'> 1.11KB </span>","children":null,"spread":false},{"title":"multi_class_lda.py <span style='color:#111;'> 486B </span>","children":null,"spread":false},{"title":"support_vector_machine.py <span style='color:#111;'> 969B </span>","children":null,"spread":false},{"title":"perceptron.py <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"ridge_regression.py <span style='color:#111;'> 2.90KB </span>","children":null,"spread":false},{"title":"gaussian_mixture_model.py <span style='color:#111;'> 565B </span>","children":null,"spread":false},{"title":"logistic_regression.py <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"principal_component_analysis.py <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"k_means.py <span style='color:#111;'> 572B </span>","children":null,"spread":false},{"title":"elastic_net.py <span style='color:#111;'> 1.95KB </span>","children":null,"spread":false},{"title":"multilayer_perceptron.py <span style='color:#111;'> 2.38KB </span>","children":null,"spread":false},{"title":"linear_regression.py <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false},{"title":"xgboost.py <span style='color:#111;'> 897B </span>","children":null,"spread":false},{"title":"partitioning_around_medoids.py <span style='color:#111;'> 540B </span>","children":null,"spread":false},{"title":"gradient_boosting_classifier.py <span style='color:#111;'> 985B </span>","children":null,"spread":false},{"title":"fp_growth.py <span style='color:#111;'> 1.09KB </span>","children":null,"spread":false},{"title":"decision_tree_regressor.py <span style='color:#111;'> 1.56KB </span>","children":null,"spread":false},{"title":"demo.py <span style='color:#111;'> 4.57KB </span>","children":null,"spread":false},{"title":"naive_bayes.py <span style='color:#111;'> 789B </span>","children":null,"spread":false},{"title":"genetic_algorithm.py <span style='color:#111;'> 1.30KB </span>","children":null,"spread":false},{"title":"convolutional_neural_network.py <span style='color:#111;'> 2.84KB </span>","children":null,"spread":false},{"title":"neuroevolution.py <span style='color:#111;'> 2.12KB </span>","children":null,"spread":false},{"title":"k_nearest_neighbors.py <span style='color:#111;'> 851B </span>","children":null,"spread":false},{"title":"bayesian_regression.py <span style='color:#111;'> 2.41KB </span>","children":null,"spread":false},{"title":"polynomial_regression.py <span style='color:#111;'> 2.92KB </span>","children":null,"spread":false},{"title":"recurrent_neural_network.py <span style='color:#111;'> 3.15KB </span>","children":null,"spread":false},{"title":"particle_swarm_optimization.py <span style='color:#111;'> 2.51KB </span>","children":null,"spread":false},{"title":"gradient_boosting_regressor.py <span style='color:#111;'> 1.81KB </span>","children":null,"spread":false},{"title":"linear_discriminant_analysis.py <span style='color:#111;'> 929B </span>","children":null,"spread":false},{"title":"apriori.py <span style='color:#111;'> 1.15KB </span>","children":null,"spread":false},{"title":"lasso_regression.py <span style='color:#111;'> 1.94KB </span>","children":null,"spread":false},{"title":"deep_q_network.py <span style='color:#111;'> 1.09KB </span>","children":null,"spread":false},{"title":"dbscan.py <span style='color:#111;'> 642B </span>","children":null,"spread":false},{"title":"restricted_boltzmann_machine.py <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"decision_tree_classifier.py <span style='color:#111;'> 956B </span>","children":null,"spread":false}],"spread":false},{"title":"reinforcement_learning","children":[{"title":"__init__.py <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"deep_q_network.py <span style='color:#111;'> 5.18KB </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":"TempLinkoping2016.txt <span style='color:#111;'> 5.88KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"requirements.txt <span style='color:#111;'> 78B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"setup.cfg <span style='color:#111;'> 57B </span>","children":null,"spread":false},{"title":"setup.py <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 13.48KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 76B </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明