Nonlinear Model Predictive Control For Autonomous Vehicles

上传者: aiyanghong | 上传时间: 2021-04-05 03:59:19 | 文件大小: 4.1MB | 文件类型: PDF
MPC
In this thesis we consider the problem of designing and implementing Model Predictive Controllers (MPC) for stabilizing the dynamics of an autonomous ground vehicle. For such a class of systems, the non-linear dynamics and the fast sampling time limit the real-time implementation of MPC algorithms to local and linear operating regions. This phenomenon becomes more relevant when using the limited computational resources of a standard rapid prototyping system for automotive applications. In this thesis we first study the design and the implementation of a nonlinear MPC controller for an Active Font Steering (AFS) problem. At each time step a trajectory is assumed to be known over a finite horizon, and the nonlinear MPC controller computes the front steering angle in order to follow the trajectory on slippery roads at the highest possible entry speed. We demonstrate that experimental tests can be performed only at low vehicle speed on a dSPACE rapid prototyping system with a frequency of 20 Hz. Then, we propose a low complexity MPC algorithm which is real-time capable for wider operating range of the state and input space (i.e., high vehicle speed and large slip angles). The MPC control algorithm is based on successive on-line linearizations of the nonlinear vehicle model (LTV MPC). We study performance and stability of the proposed MPC scheme. Performance is improved through an ad hoc stabilizing state and input constraints arising from a careful study of the vehicle nonlinearities. The stability of the LTV MPC is enforced by means of an additional convex constraint to the finite time optimization problem. We used the proposed LTV MPC algorithm in order to design AFS controllers and combined steering and braking controllers. We validated the proposed AFS and combined steering and braking MPC algorithms in real-time, on a passenger vehicle equipped with a dSPACE rapid prototyping system. Experiments have been performed in a testing center equipped with snowy and icy tracks. For both controllers we showed that vehicle stabilization can be achieved at high speed (up to 75 Kph) on icy covered roads. This research activity has been supported by Ford Research Laboratories, in Dearborn, MI, USA.

文件下载

评论信息

  • qq_43373494 :
    请问可以发PaoloFalcone的文章给我嘛,下下来发现和描述的不一样邮箱1023654622@qq.com 谢谢
    2019-11-11
  • sailing_he :
    请问可以发PaoloFalcone的文章给我嘛,下下来发现和描述的不一样邮箱1023654622@qq.com 谢谢
    2019-11-11
  • qq_39982811 :
    跪求博主是否分享一下Paolo Falcone写的Nonlinear Model Predictive Control For Autonomous Vehicles论文,这是在下的邮箱:xianbo
    2019-09-28
  • qq_39982811 :
    跪求博主是否分享一下Paolo Falcone写的Nonlinear Model Predictive Control For Autonomous Vehicles论文,这是在下的邮箱:xianbo
    2019-09-28
  • weixin_43949113 :
    3208361324@qq.com 谢谢
    2019-09-20
  • weixin_43949113 :
    3208361324@qq.com 谢谢
    2019-09-20
  • weixin_41637397 :
    求分享Paolo Falcone的论文,894446400@qq.com
    2019-06-29
  • ztrddd :
    求分享Paolo Falcone的论文,894446400@qq.com
    2019-06-29
  • ailiujing123 :
    是啊,下载的和描述的不一样,能不能给我发一下邮箱???18326184369@139.com
    2019-05-03
  • 斑马吧 :
    请问可以发PaoloFalcone的文章给我嘛,下下来发现和描述的不一样邮箱1286497314@qq.com谢谢
    2019-05-03
  • ailiujing123 :
    是啊,下载的和描述的不一样,能不能给我发一下邮箱???18326184369@139.com
    2019-05-03
  • monmons :
    描述的是Paolo Falcone的论文摘要,可下下来的是MUHAMMAD AWAIS ABBAS的文章,差评
    2019-04-10

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明