人工智能-项目实践-图像识别-基于深度学习的图像超分辨率重建及其在医学影像上的应用

上传者: admin_maxin | 上传时间: 2022-05-25 11:07:19 | 文件大小: 9.52MB | 文件类型: ZIP
人工智能-项目实践-图像识别-基于深度学习的图像超分辨率重建及其在医学影像上的应用 前言 介绍图像超分辨率问题、研究现状、前景,介绍在医学图像上进行超分辨率的重要性。 自然图像上的超分辨率研究 在 DIV2K 数据集(800 train + 100 val)进行实验。选取 baseline 模型为 ESPCN、DWSR、EDSR。针对这些模型的不足之处,提出改进:使用小波 + U-Net + 感知损失多任务学习的 LU-MWCNN模型,达到超越 baseline 的效果。 医学图像上的超分辨率应用 在 DeepLesion 数据集(CT 图像)的 Key_slices 上进行实验,同样与 baseline 模型进行对比。提出 CT-LPIPS,利用一个类 VGG 网络训练。 医学图像超分辨率平台开发 以 CT 图像为例,搭建 Web 服务,借助 Cornerstone.js 库,医生可预览 DICOM,或将图像发送至后端重建服务,以获得超分辨完成的结果。后端采用 Flask + PyTorch 进行部署和实时推理。 总结

文件下载

资源详情

[{"title":"( 173 个子文件 9.52MB ) 人工智能-项目实践-图像识别-基于深度学习的图像超分辨率重建及其在医学影像上的应用","children":[{"title":"conda.yml <span style='color:#111;'> 4.91KB </span>","children":null,"spread":false},{"title":"pip.txt <span style='color:#111;'> 4.06KB </span>","children":null,"spread":false},{"title":"conda.yaml <span style='color:#111;'> 3.03KB </span>","children":null,"spread":false},{"title":"pip.txt <span style='color:#111;'> 2.11KB </span>","children":null,"spread":false},{"title":"main.py <span style='color:#111;'> 1.36KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明