[{"title":"( 36 个子文件 5.96MB ) 人工智能-项目实践-图像识别-基于PyTorch&YOLOv4实现的口罩佩戴检测自建口罩数据集分享","children":[{"title":"MaskDetect-YOLOv4-PyTorch-master","children":[{"title":"make_annotations.ipynb <span style='color:#111;'> 3.72KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 3.61KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"utils.py <span style='color:#111;'> 12.23KB </span>","children":null,"spread":false}],"spread":true},{"title":"mAP","children":[{"title":"main.py <span style='color:#111;'> 34.13KB </span>","children":null,"spread":false},{"title":"output","children":[{"title":"mAP.png <span style='color:#111;'> 14.69KB </span>","children":null,"spread":false},{"title":"lamr.png <span style='color:#111;'> 16.14KB </span>","children":null,"spread":false},{"title":"output.txt <span style='color:#111;'> 24.33KB </span>","children":null,"spread":false},{"title":"detection-results-info.png <span style='color:#111;'> 26.96KB </span>","children":null,"spread":false},{"title":"ground-truth-info.png <span style='color:#111;'> 20.26KB </span>","children":null,"spread":false},{"title":"classes","children":[{"title":"nomask.png <span style='color:#111;'> 16.76KB </span>","children":null,"spread":false},{"title":"mask.png <span style='color:#111;'> 17.65KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"scripts","children":[{"title":"extra","children":[{"title":"convert_keras-yolo3.py <span style='color:#111;'> 3.59KB </span>","children":null,"spread":false},{"title":"result.txt <span style='color:#111;'> 668B </span>","children":null,"spread":false},{"title":"find_class.py <span style='color:#111;'> 1.40KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 3.00KB </span>","children":null,"spread":false},{"title":"convert_dr_darkflow_json.py <span style='color:#111;'> 1.47KB </span>","children":null,"spread":false},{"title":"convert_gt_yolo.py <span style='color:#111;'> 3.25KB </span>","children":null,"spread":false},{"title":"intersect-gt-and-dr.py <span style='color:#111;'> 2.28KB </span>","children":null,"spread":false},{"title":"convert_gt_xml.py <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"convert_dr_yolo.py <span style='color:#111;'> 1.94KB </span>","children":null,"spread":false},{"title":"class_list.txt <span style='color:#111;'> 381B </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 34.33KB </span>","children":null,"spread":false},{"title":"testImage_result.png <span style='color:#111;'> 891.26KB </span>","children":null,"spread":false},{"title":"total_loss.png <span style='color:#111;'> 59.18KB </span>","children":null,"spread":false},{"title":"yolo.py <span style='color:#111;'> 7.16KB </span>","children":null,"spread":false},{"title":"eval.ipynb <span style='color:#111;'> 24.93KB </span>","children":null,"spread":false},{"title":"train.ipynb <span style='color:#111;'> 44.60KB </span>","children":null,"spread":false},{"title":"nets","children":[{"title":"yolo4.py <span style='color:#111;'> 5.07KB </span>","children":null,"spread":false},{"title":"CSPdarknet.py <span style='color:#111;'> 4.86KB </span>","children":null,"spread":false},{"title":"yolo_training.py <span style='color:#111;'> 20.70KB </span>","children":null,"spread":false}],"spread":true},{"title":"predict.ipynb <span style='color:#111;'> 52.90KB </span>","children":null,"spread":false},{"title":"model_data","children":[{"title":"yolo_anchors.txt <span style='color:#111;'> 85B </span>","children":null,"spread":false},{"title":"mask_val.txt <span style='color:#111;'> 39.82KB </span>","children":null,"spread":false},{"title":"simhei.ttf <span style='color:#111;'> 9.30MB </span>","children":null,"spread":false},{"title":"mask_classes.txt <span style='color:#111;'> 12B </span>","children":null,"spread":false},{"title":"mask_train.txt <span style='color:#111;'> 126.06KB </span>","children":null,"spread":false}],"spread":true}],"spread":false}],"spread":true}]