人工智能-项目实践-强化学习-基于深度强化学习的原神自动钓鱼A

上传者: admin_maxin | 上传时间: 2022-05-12 20:05:59 | 文件大小: 173KB | 文件类型: ZIP
人工智能-项目实践-强化学习-基于深度强化学习的原神自动钓鱼A Introduction 现已支持不同分辨率屏幕 原神自动钓鱼AI由YOLOX, DQN两部分模型组成。使用迁移学习,半监督学习进行训练。 模型也包含一些使用opencv等传统数字图像处理方法实现的不可学习部分。 其中YOLOX用于鱼的定位和类型的识别以及鱼竿落点的定位。DQN用于自适应控制钓鱼过程的点击,让力度落在最佳区域内。

文件下载

资源详情

[{"title":"( 86 个子文件 173KB ) 人工智能-项目实践-强化学习-基于深度强化学习的原神自动钓鱼A","children":[{"title":"genshin_auto_fish-master","children":[{"title":"yolox","children":[{"title":"models","children":[{"title":"darknet.py <span style='color:#111;'> 5.89KB </span>","children":null,"spread":false},{"title":"network_blocks.py <span style='color:#111;'> 5.96KB </span>","children":null,"spread":false},{"title":"yolo_pafpn.py <span style='color:#111;'> 3.46KB </span>","children":null,"spread":false},{"title":"losses.py <span style='color:#111;'> 1.62KB </span>","children":null,"spread":false},{"title":"yolo_head.py <span style='color:#111;'> 22.69KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 297B </span>","children":null,"spread":false},{"title":"yolo_fpn.py <span style='color:#111;'> 2.43KB </span>","children":null,"spread":false},{"title":"yolox.py <span style='color:#111;'> 1.34KB </span>","children":null,"spread":false}],"spread":true},{"title":"core","children":[{"title":"launch.py <span style='color:#111;'> 4.28KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 152B </span>","children":null,"spread":false},{"title":"trainer.py <span style='color:#111;'> 10.78KB </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":"data_augment.py <span style='color:#111;'> 7.87KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 354B </span>","children":null,"spread":false},{"title":"data_prefetcher.py <span style='color:#111;'> 1.61KB </span>","children":null,"spread":false},{"title":"samplers.py <span style='color:#111;'> 2.79KB </span>","children":null,"spread":false},{"title":"dataloading.py <span style='color:#111;'> 3.58KB </span>","children":null,"spread":false},{"title":"datasets","children":[{"title":"coco.py <span style='color:#111;'> 7.11KB </span>","children":null,"spread":false},{"title":"voc_classes.py <span style='color:#111;'> 442B </span>","children":null,"spread":false},{"title":"coco_classes.py <span style='color:#111;'> 1.27KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 350B </span>","children":null,"spread":false},{"title":"mosaicdetection.py <span style='color:#111;'> 9.69KB </span>","children":null,"spread":false},{"title":"fish_classes.py <span style='color:#111;'> 200B </span>","children":null,"spread":false},{"title":"datasets_wrapper.py <span style='color:#111;'> 3.66KB </span>","children":null,"spread":false},{"title":"voc.py <span style='color:#111;'> 13.04KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"exp","children":[{"title":"build.py <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 191B </span>","children":null,"spread":false},{"title":"base_exp.py <span style='color:#111;'> 1.96KB </span>","children":null,"spread":false},{"title":"yolox_tiny_fish.py <span style='color:#111;'> 956B </span>","children":null,"spread":false},{"title":"yolox_base.py <span style='color:#111;'> 9.78KB </span>","children":null,"spread":false}],"spread":true},{"title":"evaluators","children":[{"title":"__init__.py <span style='color:#111;'> 178B </span>","children":null,"spread":false},{"title":"voc_eval.py <span style='color:#111;'> 5.60KB </span>","children":null,"spread":false},{"title":"coco_evaluator.py <span style='color:#111;'> 7.16KB </span>","children":null,"spread":false},{"title":"voc_evaluator.py <span style='color:#111;'> 6.56KB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 126B </span>","children":null,"spread":false},{"title":"layers","children":[{"title":"__init__.py <span style='color:#111;'> 151B </span>","children":null,"spread":false},{"title":"csrc","children":[{"title":"vision.cpp <span style='color:#111;'> 524B </span>","children":null,"spread":false},{"title":"cocoeval","children":[{"title":"cocoeval.cpp <span style='color:#111;'> 20.34KB </span>","children":null,"spread":false},{"title":"cocoeval.h <span style='color:#111;'> 3.40KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"fast_coco_eval_api.py <span style='color:#111;'> 5.62KB </span>","children":null,"spread":false}],"spread":true},{"title":"utils","children":[{"title":"demo_utils.py <span style='color:#111;'> 3.75KB </span>","children":null,"spread":false},{"title":"visualize.py <span style='color:#111;'> 3.52KB </span>","children":null,"spread":false},{"title":"model_utils.py <span style='color:#111;'> 3.19KB </span>","children":null,"spread":false},{"title":"lr_scheduler.py <span style='color:#111;'> 6.41KB </span>","children":null,"spread":false},{"title":"setup_env.py <span style='color:#111;'> 2.62KB </span>","children":null,"spread":false},{"title":"logger.py <span style='color:#111;'> 2.69KB </span>","children":null,"spread":false},{"title":"metric.py <span style='color:#111;'> 3.02KB </span>","children":null,"spread":false},{"title":"dist.py <span style='color:#111;'> 7.64KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 443B </span>","children":null,"spread":false},{"title":"checkpoint.py <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false},{"title":"boxes.py <span style='color:#111;'> 4.38KB </span>","children":null,"spread":false},{"title":"ema.py <span style='color:#111;'> 2.03KB </span>","children":null,"spread":false},{"title":"allreduce_norm.py <span style='color:#111;'> 2.78KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"train_mf.py <span style='color:#111;'> 5.74KB </span>","children":null,"spread":false},{"title":"config.yaml <span style='color:#111;'> 102B </span>","children":null,"spread":false},{"title":"test_sim.py <span style='color:#111;'> 1.20KB </span>","children":null,"spread":false},{"title":"test.py <span style='color:#111;'> 1.23KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 2.34KB </span>","children":null,"spread":false},{"title":"requirements.py <span style='color:#111;'> 2.13KB </span>","children":null,"spread":false},{"title":"yolox_tools","children":[{"title":"pseudo_gene.py <span style='color:#111;'> 9.13KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 3.76KB </span>","children":null,"spread":false},{"title":"demo.py <span style='color:#111;'> 9.91KB </span>","children":null,"spread":false}],"spread":true},{"title":"imgs","children":[{"title":"target_left.png <span style='color:#111;'> 980B </span>","children":null,"spread":false},{"title":"target_right.png <span style='color:#111;'> 990B </span>","children":null,"spread":false},{"title":"fishing.png <span style='color:#111;'> 2.68KB </span>","children":null,"spread":false},{"title":"food_bug.png <span style='color:#111;'> 10.71KB </span>","children":null,"spread":false},{"title":"bar2.png <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false},{"title":"target_now.png <span style='color:#111;'> 463B </span>","children":null,"spread":false},{"title":"exit.png <span style='color:#111;'> 5.40KB </span>","children":null,"spread":false},{"title":"bite.png <span style='color:#111;'> 823B </span>","children":null,"spread":false},{"title":"food_cm.png <span style='color:#111;'> 12.75KB </span>","children":null,"spread":false},{"title":"food_gn.png <span style='color:#111;'> 12.73KB </span>","children":null,"spread":false},{"title":"food_fy.png <span style='color:#111;'> 13.79KB </span>","children":null,"spread":false}],"spread":false},{"title":"fishing.py <span style='color:#111;'> 6.28KB </span>","children":null,"spread":false},{"title":"setup.cfg <span style='color:#111;'> 615B </span>","children":null,"spread":false},{"title":"setup.py <span style='color:#111;'> 1.64KB </span>","children":null,"spread":false},{"title":"fisher","children":[{"title":"predictor.py <span style='color:#111;'> 3.34KB </span>","children":null,"spread":false},{"title":"agent.py <span style='color:#111;'> 6.91KB </span>","children":null,"spread":false},{"title":"models.py <span style='color:#111;'> 812B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"environment.py <span style='color:#111;'> 14.34KB </span>","children":null,"spread":false}],"spread":true},{"title":"train_sim.py <span style='color:#111;'> 2.26KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 4.11KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"utils.py <span style='color:#111;'> 4.72KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 42B </span>","children":null,"spread":false},{"title":"render.py <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false}],"spread":false},{"title":"capture.py <span style='color:#111;'> 552B </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明