[{"title":"( 17 个子文件 4.03MB ) 人工智能-项目实践-汽车投保风险指数预测-基于xgboost的汽车投保风险指数预测","children":[{"title":"xgboost_car-master","children":[{"title":"mapfeat.py <span style='color:#111;'> 1.52KB </span>","children":null,"spread":false},{"title":"libsvm_data.txt <span style='color:#111;'> 6.12MB </span>","children":null,"spread":false},{"title":"valid.txt <span style='color:#111;'> 2.45MB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 444B </span>","children":null,"spread":false},{"title":"classify.py <span style='color:#111;'> 1.53KB </span>","children":null,"spread":false},{"title":"test_sample.csv <span style='color:#111;'> 25B </span>","children":null,"spread":false},{"title":"train.txt <span style='color:#111;'> 3.67MB </span>","children":null,"spread":false},{"title":"train.csv <span style='color:#111;'> 2.94MB </span>","children":null,"spread":false},{"title":"mknfold.py <span style='color:#111;'> 282B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 45B </span>","children":null,"spread":false},{"title":"test.csv <span style='color:#111;'> 807.51KB </span>","children":null,"spread":false},{"title":"xgboost_car2","children":[{"title":"mapfeat.py <span style='color:#111;'> 2.19KB </span>","children":null,"spread":false},{"title":"regression.py <span style='color:#111;'> 6.43KB </span>","children":null,"spread":false},{"title":"train.csv <span style='color:#111;'> 2.94MB </span>","children":null,"spread":false},{"title":"1501214415_predict.csv <span style='color:#111;'> 260.88KB </span>","children":null,"spread":false},{"title":"test.csv <span style='color:#111;'> 807.51KB </span>","children":null,"spread":false},{"title":"readme.txt <span style='color:#111;'> 530B </span>","children":null,"spread":false}],"spread":true}],"spread":false}],"spread":true}]