人工智能_YOLOv3_行人重识别_利用YOLOv3结合行人重识别模型,实现行人的检测识别,查找特定行人

上传者: admin_maxin | 上传时间: 2022-04-17 12:05:58 | 文件大小: 5.52MB | 文件类型: ZIP
人工智能_YOLOv3_行人重识别_利用YOLOv3结合行人重识别模型,实现行人的检测识别,查找特定行人 YOLO是直接采用原来的权重文件,并且还支持YOLO-spp. 行人重识别采用了Market1501、CUHK03和MSMT17三个数据集大概十七万张图片进行联合训练的,泛化性能更好。

文件下载

资源详情

[{"title":"( 51 个子文件 5.52MB ) 人工智能_YOLOv3_行人重识别_利用YOLOv3结合行人重识别模型,实现行人的检测识别,查找特定行人","children":[{"title":"person_search_demo-master","children":[{"title":"models.py <span style='color:#111;'> 20.86KB </span>","children":null,"spread":false},{"title":"search.py <span style='color:#111;'> 10.68KB </span>","children":null,"spread":false},{"title":"cfg","children":[{"title":"yolov3.cfg <span style='color:#111;'> 8.14KB </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":"coco.names <span style='color:#111;'> 621B </span>","children":null,"spread":false},{"title":"samples","children":[{"title":"c3s1_000501.jpg <span style='color:#111;'> 301.73KB </span>","children":null,"spread":false},{"title":"c1s1_002376.jpg <span style='color:#111;'> 263.99KB </span>","children":null,"spread":false},{"title":"c1s1_002351.jpg <span style='color:#111;'> 263.66KB </span>","children":null,"spread":false},{"title":"c1s1_002301.jpg <span style='color:#111;'> 262.27KB </span>","children":null,"spread":false},{"title":"c1s1_009476.jpg <span style='color:#111;'> 268.28KB </span>","children":null,"spread":false},{"title":"c1s1_009451.jpg <span style='color:#111;'> 265.99KB </span>","children":null,"spread":false},{"title":"c3s1_000551.jpg <span style='color:#111;'> 301.50KB </span>","children":null,"spread":false},{"title":"c1s1_009376.jpg <span style='color:#111;'> 263.97KB </span>","children":null,"spread":false},{"title":"c1s1_002326.jpg <span style='color:#111;'> 264.96KB </span>","children":null,"spread":false},{"title":"c1s1_009526.jpg <span style='color:#111;'> 271.24KB </span>","children":null,"spread":false},{"title":"c1s1_001051.jpg <span style='color:#111;'> 268.98KB </span>","children":null,"spread":false},{"title":"c1s1_014901.jpg <span style='color:#111;'> 260.33KB </span>","children":null,"spread":false},{"title":"c3s1_001626.jpg <span style='color:#111;'> 299.71KB </span>","children":null,"spread":false},{"title":"c1s1_002401.jpg <span style='color:#111;'> 260.37KB </span>","children":null,"spread":false},{"title":"c1s1_014776.jpg <span style='color:#111;'> 263.90KB </span>","children":null,"spread":false},{"title":"c1s1_014601.jpg <span style='color:#111;'> 274.44KB </span>","children":null,"spread":false}],"spread":false},{"title":"coco.data <span style='color:#111;'> 110B </span>","children":null,"spread":false}],"spread":true},{"title":"query","children":[{"title":"0001_c1s1_001051_00.jpg <span style='color:#111;'> 2.39KB </span>","children":null,"spread":false},{"title":"0001_c6s1_009601_00.jpg <span style='color:#111;'> 2.24KB </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"reid","children":[{"title":"config","children":[{"title":"__init__.py <span style='color:#111;'> 113B </span>","children":null,"spread":false},{"title":"defaults.py <span style='color:#111;'> 3.21KB </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":"build.py <span style='color:#111;'> 761B </span>","children":null,"spread":false},{"title":"collate_batch.py <span style='color:#111;'> 373B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 117B </span>","children":null,"spread":false},{"title":"transforms","children":[{"title":"build.py <span style='color:#111;'> 454B </span>","children":null,"spread":false},{"title":"transforms.py <span style='color:#111;'> 1.82KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 117B </span>","children":null,"spread":false}],"spread":true},{"title":"datasets","children":[{"title":"bases.py <span style='color:#111;'> 1.72KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 158B </span>","children":null,"spread":false},{"title":"dataset_loader.py <span style='color:#111;'> 1.14KB </span>","children":null,"spread":false},{"title":"eval_reid.py <span style='color:#111;'> 2.05KB </span>","children":null,"spread":false},{"title":"market1501.py <span style='color:#111;'> 3.86KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"modeling","children":[{"title":"__init__.py <span style='color:#111;'> 427B </span>","children":null,"spread":false},{"title":"backbones","children":[{"title":"resnet.py <span style='color:#111;'> 4.44KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 83B </span>","children":null,"spread":false},{"title":"resnet_ibn_a.py <span style='color:#111;'> 5.41KB </span>","children":null,"spread":false}],"spread":true},{"title":"baseline.py <span style='color:#111;'> 2.34KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"detect.py <span style='color:#111;'> 6.58KB </span>","children":null,"spread":false},{"title":"query_get.py <span style='color:#111;'> 1.19KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.12KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"utils.py <span style='color:#111;'> 25.40KB </span>","children":null,"spread":false},{"title":"init.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"datasets.py <span style='color:#111;'> 25.57KB </span>","children":null,"spread":false},{"title":"torch_utils.py <span style='color:#111;'> 2.23KB </span>","children":null,"spread":false},{"title":"parse_config.py <span style='color:#111;'> 3.35KB </span>","children":null,"spread":false}],"spread":true},{"title":"show.jpg <span style='color:#111;'> 1.24MB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明