RF_MexStandalone-v0.02-precompiled.zip

上传者: ab1203766435 | 上传时间: 2021-07-21 17:23:06 | 文件大小: 456KB | 文件类型: ZIP
随机森林是一种集成算法(Ensemble Learning),它属于Bagging类型,通过组合多个弱分类器,最终结果通过投票或取均值,使得整体模型的结果具有较高的精确度和泛化性能。其可以取得不错成绩,主要归功于“随机”和“森林”,一个使它具有抗过拟合能力,一个使它更加精准。

文件下载

资源详情

[{"title":"( 64 个子文件 456KB ) RF_MexStandalone-v0.02-precompiled.zip","children":[{"title":"RF_MexStandalone-v0.02-precompiled","children":[{"title":"randomforest-matlab","children":[{"title":"RF_Class_C","children":[{"title":"mexClassRF_train.mexw64 <span style='color:#111;'> 45.00KB </span>","children":null,"spread":false},{"title":"twonorm_C_devcpp.dev <span style='color:#111;'> 1.74KB </span>","children":null,"spread":false},{"title":"test_ClassRF_extensively.m <span style='color:#111;'> 604B </span>","children":null,"spread":false},{"title":"classRF_train.m <span style='color:#111;'> 14.48KB </span>","children":null,"spread":false},{"title":"Compile_Check <span style='color:#111;'> 856B </span>","children":null,"spread":false},{"title":"mexClassRF_train.mexw32 <span style='color:#111;'> 31.50KB </span>","children":null,"spread":false},{"title":"classRF_predict(1).m <span style='color:#111;'> 2.12KB </span>","children":null,"spread":false},{"title":"twonorm_C_devcpp.layout <span style='color:#111;'> 19B </span>","children":null,"spread":false},{"title":"rfsub.o <span style='color:#111;'> 9.61KB </span>","children":null,"spread":false},{"title":"src","children":[{"title":"classTree.cpp <span style='color:#111;'> 8.74KB </span>","children":null,"spread":false},{"title":"rfsub.f <span style='color:#111;'> 15.48KB </span>","children":null,"spread":false},{"title":"cokus.cpp <span style='color:#111;'> 7.50KB </span>","children":null,"spread":false},{"title":"rf.h <span style='color:#111;'> 5.06KB </span>","children":null,"spread":false},{"title":"mex_ClassificationRF_predict.cpp <span style='color:#111;'> 5.10KB </span>","children":null,"spread":false},{"title":"twonorm_C_wrapper.cpp <span style='color:#111;'> 9.63KB </span>","children":null,"spread":false},{"title":"rfutils.cpp <span style='color:#111;'> 9.38KB </span>","children":null,"spread":false},{"title":"mex_ClassificationRF_train.cpp <span style='color:#111;'> 8.34KB </span>","children":null,"spread":false},{"title":"qsort.c <span style='color:#111;'> 4.57KB </span>","children":null,"spread":false},{"title":"cokus_test.cpp <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false},{"title":"classRF.cpp <span style='color:#111;'> 33.09KB </span>","children":null,"spread":false}],"spread":false},{"title":"compile_windows.m <span style='color:#111;'> 1.68KB </span>","children":null,"spread":false},{"title":"precompiled_rfsub","children":[{"title":"win32","children":[{"title":"rfsub.o <span style='color:#111;'> 6.69KB </span>","children":null,"spread":false}],"spread":false},{"title":"linux64","children":null,"spread":false},{"title":"win64","children":[{"title":"rfsub.o <span style='color:#111;'> 9.61KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"tempbuild","children":null,"spread":false},{"title":"README.txt <span style='color:#111;'> 3.18KB </span>","children":null,"spread":false},{"title":"Makefile <span style='color:#111;'> 2.63KB </span>","children":null,"spread":false},{"title":"tutorial_ClassRF.m <span style='color:#111;'> 10.16KB </span>","children":null,"spread":false},{"title":"compile_linux.m <span style='color:#111;'> 557B </span>","children":null,"spread":false},{"title":"Makefile.windows <span style='color:#111;'> 2.46KB </span>","children":null,"spread":false},{"title":"mexClassRF_predict.mexw64 <span style='color:#111;'> 26.00KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"twonorm.mat <span style='color:#111;'> 47.71KB </span>","children":null,"spread":false},{"title":"Y_twonorm.txt <span style='color:#111;'> 600B </span>","children":null,"spread":false},{"title":"X_twonorm.txt <span style='color:#111;'> 94.04KB </span>","children":null,"spread":false}],"spread":false},{"title":"classRF_train1.m <span style='color:#111;'> 14.48KB </span>","children":null,"spread":false},{"title":"Version_History.txt <span style='color:#111;'> 1.44KB </span>","children":null,"spread":false},{"title":"mexClassRF_predict.mexw32 <span style='color:#111;'> 20.50KB </span>","children":null,"spread":false},{"title":"classRF_predict.m <span style='color:#111;'> 2.12KB </span>","children":null,"spread":false}],"spread":false},{"title":"RF_Reg_C","children":[{"title":"regRF_predict.m <span style='color:#111;'> 986B </span>","children":null,"spread":false},{"title":"diabetes_C_devc.dev <span style='color:#111;'> 1.26KB </span>","children":null,"spread":false},{"title":"regRF_train.m <span style='color:#111;'> 12.56KB </span>","children":null,"spread":false},{"title":"test_RegRF_extensively.m <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false},{"title":"mexRF_predict.mexw64 <span style='color:#111;'> 11.00KB </span>","children":null,"spread":false},{"title":"src","children":[{"title":"mex_regressionRF_train.cpp <span style='color:#111;'> 12.10KB </span>","children":null,"spread":false},{"title":"cokus.cpp <span style='color:#111;'> 7.50KB </span>","children":null,"spread":false},{"title":"reg_RF.cpp <span style='color:#111;'> 39.35KB </span>","children":null,"spread":false},{"title":"mex_regressionRF_predict.cpp <span style='color:#111;'> 3.77KB </span>","children":null,"spread":false},{"title":"qsort.c <span style='color:#111;'> 4.57KB </span>","children":null,"spread":false},{"title":"cokus_test.cpp <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false},{"title":"diabetes_C_wrapper.cpp <span style='color:#111;'> 11.40KB </span>","children":null,"spread":false},{"title":"reg_RF.h <span style='color:#111;'> 560B </span>","children":null,"spread":false}],"spread":true},{"title":"Compile_Check_kcachegrind <span style='color:#111;'> 611B </span>","children":null,"spread":false},{"title":"compile_windows.m <span style='color:#111;'> 915B </span>","children":null,"spread":false},{"title":"tempbuild","children":null,"spread":false},{"title":"README.txt <span style='color:#111;'> 2.69KB </span>","children":null,"spread":false},{"title":"Makefile <span style='color:#111;'> 1.73KB </span>","children":null,"spread":false},{"title":"compile_linux.m <span style='color:#111;'> 952B </span>","children":null,"spread":false},{"title":"tutorial_RegRF.m <span style='color:#111;'> 9.28KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"X_diabetes.txt <span style='color:#111;'> 108.34KB </span>","children":null,"spread":false},{"title":"diabetes.mat <span style='color:#111;'> 259.44KB </span>","children":null,"spread":false},{"title":"Y_diabetes.txt <span style='color:#111;'> 11.22KB </span>","children":null,"spread":false}],"spread":false},{"title":"mexRF_train.mexw64 <span style='color:#111;'> 33.50KB </span>","children":null,"spread":false},{"title":"mexRF_predict.mexw32 <span style='color:#111;'> 10.50KB </span>","children":null,"spread":false},{"title":"Version_History.txt <span style='color:#111;'> 384B </span>","children":null,"spread":false},{"title":"Compile_Check_memcheck <span style='color:#111;'> 623B </span>","children":null,"spread":false},{"title":"mexRF_train.mexw32 <span style='color:#111;'> 25.00KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"README_Windows_binary.txt <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明