Extreme learning machine: Theory and applications.pdf

上传者: SparkQiang | 上传时间: 2021-03-29 17:42:11 | 文件大小: 446KB | 文件类型: PDF
很明显,前向神经网络的学习速度通常远低于要求,这一直是其应用的主要瓶颈。这背后的两个主要原因可能是:(1)基于慢梯度的学习算法被广泛用于训练神经网络;(2)使用这种学习算法,网络的所有参数都是迭代调整的。与传统的学习算法不同,本文提出了一种新的单隐层前馈神经网络(SLFNs)的学习算法ELM,该算法随机选择隐节点并解析地确定slfn的输出权值。理论上讲,该算法在极快的学习速度下具有良好的泛化性能。基于一些人工和真实的基准函数逼近和分类问题(包括非常复杂的应用)的实验结果表明,新算法在大多数情况下都能产生良好的泛化性能,并且比传统的常用学习算法学习速度快数千倍前馈神经网络。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明