Landau-Ginzburg相场模型的Matlab实现_Matlab Implementation of Landau

上传者: SherryJin | 上传时间: 2025-11-30 20:56:05 | 文件大小: 9.72MB | 文件类型: ZIP
Landau-Ginzburg相场模型是一种用于描述物质相变的微观模型,其理论基础主要是Landau理论和Ginzburg-Landau方程。这种模型的核心在于将物质的相变视为一种微观粒子在热力学性质上的渐变,这种渐变通过自由能的最小化来描述。相场模型通过引入一个连续的序参量来模拟物质的相界面,序参量在不同相中的取值不同,而在相界面上则连续变化。 Matlab是一种广泛应用于工程计算、数据分析和数值仿真领域的高性能数值计算和可视化软件,它提供的强大计算能力以及丰富的工具箱,使得科学家和工程师能够方便地实现复杂的数学模型和算法。在Landau-Ginzburg相场模型的数值仿真中,Matlab能够提供一个理想的实验平台。 Matlab实现Landau-Ginzburg相场模型的过程中,涉及到的关键步骤通常包括模型的数学方程建立、方程的离散化处理、边界条件和初始条件的设置、以及算法的迭代求解等。这些步骤都是通过编写Matlab程序代码来完成的。为了保证仿真的准确性和效率,通常会采用有限差分法、有限元法等数值计算方法对相场模型中的偏微分方程进行离散化。同时,还需要对Matlab的算法库、图形用户界面等资源进行充分利用,以实现模型的精确求解和结果的直观展示。 此外,Matlab的并行计算和高性能计算能力使得处理大规模相场问题成为可能。这意味着在大规模的仿真计算中,可以利用Matlab进行高效的数据处理和计算任务的分配,这在物质相变等复杂物理问题的研究中具有重要的意义。 Matlab实现Landau-Ginzburg相场模型的整个过程,不仅仅是一个算法的实现过程,更是对相变理论、数值计算方法和软件应用能力的综合考察。通过这个过程,研究者可以更加深入地理解物质相变的微观机制,并且能够借助Matlab的强大功能,将理论转化为实际的数值模拟结果,从而为新材料的开发、复杂相结构的研究等提供了有力的工具。 Phase-Field-Modeling-master这个文件夹,可能包含了实现Landau-Ginzburg相场模型的所有必要的脚本、函数文件以及数据文件。这些文件中的内容涉及到了从模型的建立、方程的求解到结果的可视化等各个方面,使用者可以通过这个文件夹,获得完整的从理论到实践的整个实现流程。对于研究人员来说,这个文件夹提供了宝贵的资源,使得他们可以在前人的基础上进行研究,或者利用这些脚本进行自己的相场模型仿真和分析。

文件下载

资源详情

[{"title":"( 196 个子文件 9.72MB ) Landau-Ginzburg相场模型的Matlab实现_Matlab Implementation of Landau","children":[{"title":"BFO Validation.docx <span style='color:#111;'> 964.17KB </span>","children":null,"spread":false},{"title":"Verify Elastic.docx <span style='color:#111;'> 857.21KB </span>","children":null,"spread":false},{"title":"2. Eshelby and Mech Equ.docx <span style='color:#111;'> 585.62KB </span>","children":null,"spread":false},{"title":"4. Nambu Matrix Method.docx <span style='color:#111;'> 532.55KB </span>","children":null,"spread":false},{"title":"12. inhomogeneous Elasticity.docx <span style='color:#111;'> 423.53KB </span>","children":null,"spread":false},{"title":"11. Arbitrarily Oriented Substrate.docx <span style='color:#111;'> 388.84KB </span>","children":null,"spread":false},{"title":"9. (110) Oriented Substrate.docx <span style='color:#111;'> 388.27KB </span>","children":null,"spread":false},{"title":"8. Substrate Orientation.docx <span style='color:#111;'> 387.22KB </span>","children":null,"spread":false},{"title":"6. Electrostatic Energy.docx <span style='color:#111;'> 246.39KB </span>","children":null,"spread":false},{"title":"BTO Results.docx <span style='color:#111;'> 224.51KB </span>","children":null,"spread":false},{"title":"13. Higher Order Time Methods.docx <span style='color:#111;'> 136.96KB </span>","children":null,"spread":false},{"title":"5. Infinite Plate Solution.docx <span style='color:#111;'> 60.43KB </span>","children":null,"spread":false},{"title":"1. Free Energy.docx <span style='color:#111;'> 53.80KB </span>","children":null,"spread":false},{"title":"7. Time Dependent Landau Ginzbug Devonshire Equation.docx <span style='color:#111;'> 24.41KB </span>","children":null,"spread":false},{"title":"3. Khachutryan Eigenstrain Method.docx <span style='color:#111;'> 23.16KB </span>","children":null,"spread":false},{"title":"II. Fourier Transforms.docx <span style='color:#111;'> 19.95KB </span>","children":null,"spread":false},{"title":"I. Notation.docx <span style='color:#111;'> 14.38KB </span>","children":null,"spread":false},{"title":"III. Total Energy Densities.docx <span style='color:#111;'> 13.69KB </span>","children":null,"spread":false},{"title":".emacs <span style='color:#111;'> 500B </span>","children":null,"spread":false},{"title":".gitattributes <span style='color:#111;'> 378B </span>","children":null,"spread":false},{"title":"LandauEnergy.m <span style='color:#111;'> 27.32KB </span>","children":null,"spread":false},{"title":"analytical_derivations.m <span style='color:#111;'> 19.27KB </span>","children":null,"spread":false},{"title":"EigenstrainInFilm.m <span style='color:#111;'> 16.66KB </span>","children":null,"spread":false},{"title":"freezeColors.m <span style='color:#111;'> 9.58KB </span>","children":null,"spread":false},{"title":"freezeColors.m <span style='color:#111;'> 9.58KB </span>","children":null,"spread":false},{"title":"freezeColors.m <span style='color:#111;'> 9.58KB </span>","children":null,"spread":false},{"title":"BST.m <span style='color:#111;'> 6.92KB </span>","children":null,"spread":false},{"title":"CalcElasticEnergy.m <span style='color:#111;'> 6.43KB </span>","children":null,"spread":false},{"title":"Setup.m <span style='color:#111;'> 6.14KB </span>","children":null,"spread":false},{"title":"InfinitePlate.m <span style='color:#111;'> 6.05KB </span>","children":null,"spread":false},{"title":"InfinitePlate.m <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"EigenstrainInFilm.m <span style='color:#111;'> 5.79KB </span>","children":null,"spread":false},{"title":"Visualize_3D.m <span style='color:#111;'> 5.59KB </span>","children":null,"spread":false},{"title":"Visualize_3D.m <span style='color:#111;'> 5.59KB </span>","children":null,"spread":false},{"title":"Visualize_3D.m <span style='color:#111;'> 5.59KB </span>","children":null,"spread":false},{"title":"Setup_BST.m <span style='color:#111;'> 5.51KB </span>","children":null,"spread":false},{"title":"InfinitePlate.m <span style='color:#111;'> 5.43KB </span>","children":null,"spread":false},{"title":"EnergyDensities.m <span style='color:#111;'> 5.36KB </span>","children":null,"spread":false},{"title":"EnergyDensities.m <span style='color:#111;'> 5.36KB </span>","children":null,"spread":false},{"title":"InfinitePlateIsotropic.m <span style='color:#111;'> 5.21KB </span>","children":null,"spread":false},{"title":"BFO.m <span style='color:#111;'> 5.13KB </span>","children":null,"spread":false},{"title":"Setup_BST.m <span style='color:#111;'> 4.86KB </span>","children":null,"spread":false},{"title":"Setup_BST.m <span style='color:#111;'> 4.86KB </span>","children":null,"spread":false},{"title":"Setup_BST.m <span style='color:#111;'> 4.84KB </span>","children":null,"spread":false},{"title":"LandauEnergy.m <span style='color:#111;'> 4.14KB </span>","children":null,"spread":false},{"title":"EnergyDensities.m <span style='color:#111;'> 3.88KB </span>","children":null,"spread":false},{"title":"InfinitePlateSetup_vpa.m <span style='color:#111;'> 3.80KB </span>","children":null,"spread":false},{"title":"InfinitePlateSetup_vpa.m <span style='color:#111;'> 3.80KB </span>","children":null,"spread":false},{"title":"InfinitePlateSetup_vpa.m <span style='color:#111;'> 3.76KB </span>","children":null,"spread":false},{"title":"LatticeStrain.m <span style='color:#111;'> 3.64KB </span>","children":null,"spread":false},{"title":"Setup.m <span style='color:#111;'> 3.64KB </span>","children":null,"spread":false},{"title":"InfinitePlateSetup.m <span style='color:#111;'> 3.61KB </span>","children":null,"spread":false},{"title":"InfinitePlateSetup.m <span style='color:#111;'> 3.61KB </span>","children":null,"spread":false},{"title":"Setup.m <span style='color:#111;'> 3.58KB </span>","children":null,"spread":false},{"title":"DomainPctCalc.m <span style='color:#111;'> 3.56KB </span>","children":null,"spread":false},{"title":"DomainPctCalc.m <span style='color:#111;'> 3.56KB </span>","children":null,"spread":false},{"title":"unfreezeColors.m <span style='color:#111;'> 3.53KB </span>","children":null,"spread":false},{"title":"unfreezeColors.m <span style='color:#111;'> 3.53KB </span>","children":null,"spread":false},{"title":"unfreezeColors.m <span style='color:#111;'> 3.53KB </span>","children":null,"spread":false},{"title":"InfinitePlateSetup.m <span style='color:#111;'> 3.38KB </span>","children":null,"spread":false},{"title":"CalcElecEnergy.m <span style='color:#111;'> 3.37KB </span>","children":null,"spread":false},{"title":"CalcElecEnergy.m <span style='color:#111;'> 3.37KB </span>","children":null,"spread":false},{"title":"Setup_1.m <span style='color:#111;'> 3.33KB </span>","children":null,"spread":false},{"title":"Setup_BTO.m <span style='color:#111;'> 3.30KB </span>","children":null,"spread":false},{"title":"Setup_PTO.m <span style='color:#111;'> 3.22KB </span>","children":null,"spread":false},{"title":"EigenstrainInFilm.m <span style='color:#111;'> 3.15KB </span>","children":null,"spread":false},{"title":"CalcElasticEnergy.m <span style='color:#111;'> 3.09KB </span>","children":null,"spread":false},{"title":"Setup_BFO_2.m <span style='color:#111;'> 3.03KB </span>","children":null,"spread":false},{"title":"Setup_BFO_2.m <span style='color:#111;'> 3.03KB </span>","children":null,"spread":false},{"title":"Setup_BFO_2.m <span style='color:#111;'> 3.02KB </span>","children":null,"spread":false},{"title":"CalcElecEnergy.m <span style='color:#111;'> 2.96KB </span>","children":null,"spread":false},{"title":"CalcEigenstrains.m <span style='color:#111;'> 2.89KB </span>","children":null,"spread":false},{"title":"DomainPctCalc.m <span style='color:#111;'> 2.84KB </span>","children":null,"spread":false},{"title":"Hysteresis.m <span style='color:#111;'> 2.71KB </span>","children":null,"spread":false},{"title":"Hysteresis.m <span style='color:#111;'> 2.71KB </span>","children":null,"spread":false},{"title":"CalculateStress.m <span style='color:#111;'> 2.63KB </span>","children":null,"spread":false},{"title":"Hysteresis.m <span style='color:#111;'> 2.58KB </span>","children":null,"spread":false},{"title":"colorGradient.m <span style='color:#111;'> 2.43KB </span>","children":null,"spread":false},{"title":"colorGradient.m <span style='color:#111;'> 2.43KB </span>","children":null,"spread":false},{"title":"colorGradient.m <span style='color:#111;'> 2.43KB </span>","children":null,"spread":false},{"title":"MainLoop.m <span style='color:#111;'> 2.02KB </span>","children":null,"spread":false},{"title":"MainLoop.m <span style='color:#111;'> 2.02KB </span>","children":null,"spread":false},{"title":"MainLoop.m <span style='color:#111;'> 1.77KB </span>","children":null,"spread":false},{"title":"CalculateStrain.m <span style='color:#111;'> 1.74KB </span>","children":null,"spread":false},{"title":"CalculateStrain.m <span style='color:#111;'> 1.74KB </span>","children":null,"spread":false},{"title":"LandauEnergy.m <span style='color:#111;'> 1.62KB </span>","children":null,"spread":false},{"title":"GreenTensorSetupIsotropic.m <span style='color:#111;'> 1.61KB </span>","children":null,"spread":false},{"title":"SaveData.m <span style='color:#111;'> 1.56KB </span>","children":null,"spread":false},{"title":"SaveData.m <span style='color:#111;'> 1.56KB </span>","children":null,"spread":false},{"title":"HomoStrainSetup.m <span style='color:#111;'> 1.55KB </span>","children":null,"spread":false},{"title":"CalcElasticEnergy.m <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false},{"title":"CalculateStrain.m <span style='color:#111;'> 1.37KB </span>","children":null,"spread":false},{"title":"SaveData.m <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false},{"title":"AxesSetup.m <span style='color:#111;'> 1.28KB </span>","children":null,"spread":false},{"title":"AxesSetup.m <span style='color:#111;'> 1.28KB </span>","children":null,"spread":false},{"title":"AxesSetup.m <span style='color:#111;'> 1.28KB </span>","children":null,"spread":false},{"title":"Main.m <span style='color:#111;'> 1.27KB </span>","children":null,"spread":false},{"title":"CalcEigenstrains.m <span style='color:#111;'> 1.24KB </span>","children":null,"spread":false},{"title":"GreenTensorSetup.m <span style='color:#111;'> 1.20KB </span>","children":null,"spread":false},{"title":"GreenTensorSetup.m <span style='color:#111;'> 1.20KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明