用Python实现本地模拟横向联邦学习

上传者: SAGIRIsagiri | 上传时间: 2022-06-06 17:06:01 | 文件大小: 302.68MB | 文件类型: RAR
使用Python在本地模拟多个客户端,然后由服务器统一管理进行联邦学习,客户端在本地用自己的数据对模型进行训练,服务器将训练结果聚合更新模型并分发给客户端,客户端继续训练。

文件下载

资源详情

[{"title":"( 25 个子文件 302.68MB ) 用Python实现本地模拟横向联邦学习","children":[{"title":"FL","children":[{"title":"utils","children":[{"title":"conf.json <span style='color:#111;'> 567B </span>","children":null,"spread":false}],"spread":true},{"title":"server.py <span style='color:#111;'> 2.68KB </span>","children":null,"spread":false},{"title":"models.py <span style='color:#111;'> 908B </span>","children":null,"spread":false},{"title":"datasets.py <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false},{"title":"main.py <span style='color:#111;'> 2.08KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"server.cpython-39.pyc <span style='color:#111;'> 1.61KB </span>","children":null,"spread":false},{"title":"client.cpython-39.pyc <span style='color:#111;'> 1.69KB </span>","children":null,"spread":false},{"title":"models.cpython-39.pyc <span style='color:#111;'> 739B </span>","children":null,"spread":false},{"title":"datasets.cpython-39.pyc <span style='color:#111;'> 818B </span>","children":null,"spread":false}],"spread":true},{"title":".idea","children":[{"title":".gitignore <span style='color:#111;'> 50B </span>","children":null,"spread":false},{"title":"workspace.xml <span style='color:#111;'> 3.99KB </span>","children":null,"spread":false},{"title":"misc.xml <span style='color:#111;'> 195B </span>","children":null,"spread":false},{"title":"modules.xml <span style='color:#111;'> 263B </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"profiles_settings.xml <span style='color:#111;'> 174B </span>","children":null,"spread":false}],"spread":true},{"title":"FL.iml <span style='color:#111;'> 291B </span>","children":null,"spread":false}],"spread":true},{"title":"client.py <span style='color:#111;'> 3.03KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"cifar-10-python.tar.gz <span style='color:#111;'> 162.60MB </span>","children":null,"spread":false},{"title":"cifar-10-batches-py","children":[{"title":"data_batch_4 <span style='color:#111;'> 29.60MB </span>","children":null,"spread":false},{"title":"test_batch <span style='color:#111;'> 29.60MB </span>","children":null,"spread":false},{"title":"readme.html <span style='color:#111;'> 88B </span>","children":null,"spread":false},{"title":"data_batch_3 <span style='color:#111;'> 29.60MB </span>","children":null,"spread":false},{"title":"data_batch_1 <span style='color:#111;'> 29.60MB </span>","children":null,"spread":false},{"title":"batches.meta <span style='color:#111;'> 158B </span>","children":null,"spread":false},{"title":"data_batch_2 <span style='color:#111;'> 29.60MB </span>","children":null,"spread":false},{"title":"data_batch_5 <span style='color:#111;'> 29.60MB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明