机器学习算法封装实现.rar

上传者: Rosen_er | 上传时间: 2021-08-18 17:43:57 | 文件大小: 43KB | 文件类型: RAR
自己封装的多种机器学习算法库,基于python实现。包括线性回归、KNN算法、梯度下降、主成分分析、多项式回归等

文件下载

资源详情

[{"title":"( 70 个子文件 43KB ) 机器学习算法封装实现.rar","children":[{"title":"机器学习算法封装实现","children":[{"title":"ML_Validation","children":[{"title":"Cross_Validation.py <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"Learning_Curve.py <span style='color:#111;'> 2.17KB </span>","children":null,"spread":false},{"title":".idea","children":[{"title":"$CACHE_FILE$ <span style='color:#111;'> 220B </span>","children":null,"spread":false},{"title":"misc.xml <span style='color:#111;'> 188B </span>","children":null,"spread":false},{"title":"modules.xml <span style='color:#111;'> 287B </span>","children":null,"spread":false},{"title":"Learning_Curve.iml <span style='color:#111;'> 464B </span>","children":null,"spread":false},{"title":"workspace.xml <span style='color:#111;'> 5.03KB </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"profiles_settings.xml <span style='color:#111;'> 174B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"Catch.py <span style='color:#111;'> 2.18KB </span>","children":null,"spread":false}],"spread":true},{"title":"ML_Polynomial_Regression","children":[{"title":"sklearn_Poly.py <span style='color:#111;'> 672B </span>","children":null,"spread":false},{"title":"example.py <span style='color:#111;'> 542B </span>","children":null,"spread":false},{"title":"Pipelline.py <span style='color:#111;'> 875B </span>","children":null,"spread":false},{"title":".idea","children":[{"title":"$CACHE_FILE$ <span style='color:#111;'> 220B </span>","children":null,"spread":false},{"title":"misc.xml <span style='color:#111;'> 188B </span>","children":null,"spread":false},{"title":"modules.xml <span style='color:#111;'> 301B </span>","children":null,"spread":false},{"title":"workspace.xml <span style='color:#111;'> 5.04KB </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"profiles_settings.xml <span style='color:#111;'> 174B </span>","children":null,"spread":false}],"spread":true},{"title":"Polynomial_Regression.iml <span style='color:#111;'> 464B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"ML_Linear_Regression","children":[{"title":"example.py <span style='color:#111;'> 658B </span>","children":null,"spread":false},{"title":"LR_train.py <span style='color:#111;'> 799B </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"More_LR_class.cpython-37.pyc <span style='color:#111;'> 1.65KB </span>","children":null,"spread":false},{"title":"Simple_LR_class.cpython-37.pyc <span style='color:#111;'> 1.77KB </span>","children":null,"spread":false}],"spread":true},{"title":"LinearRegression.py <span style='color:#111;'> 477B </span>","children":null,"spread":false},{"title":"More_LR_class.py <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":".idea","children":[{"title":"$CACHE_FILE$ <span style='color:#111;'> 220B </span>","children":null,"spread":false},{"title":"misc.xml <span style='color:#111;'> 188B </span>","children":null,"spread":false},{"title":"modules.xml <span style='color:#111;'> 299B </span>","children":null,"spread":false},{"title":"workspace.xml <span style='color:#111;'> 6.17KB </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"profiles_settings.xml <span style='color:#111;'> 174B </span>","children":null,"spread":false}],"spread":false},{"title":"ML_Linear_Regression.iml <span style='color:#111;'> 464B </span>","children":null,"spread":false}],"spread":true},{"title":"sklearn_LR.py <span style='color:#111;'> 1.14KB </span>","children":null,"spread":false},{"title":"Simple_LR_class.py <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false}],"spread":true},{"title":"ML_KNN","children":[{"title":"ML_Project_01.py <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 235B </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"metrics.cpython-37.pyc <span style='color:#111;'> 428B </span>","children":null,"spread":false},{"title":"model_selection.cpython-37.pyc <span style='color:#111;'> 758B </span>","children":null,"spread":false}],"spread":true},{"title":".idea","children":[{"title":"$CACHE_FILE$ <span style='color:#111;'> 220B </span>","children":null,"spread":false},{"title":"misc.xml <span style='color:#111;'> 188B </span>","children":null,"spread":false},{"title":"modules.xml <span style='color:#111;'> 313B </span>","children":null,"spread":false},{"title":"Machine Learning Project 01.iml <span style='color:#111;'> 464B </span>","children":null,"spread":false},{"title":"workspace.xml <span style='color:#111;'> 5.04KB </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"profiles_settings.xml <span style='color:#111;'> 174B </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"digits.py <span style='color:#111;'> 1.11KB </span>","children":null,"spread":false},{"title":"model_selection.py <span style='color:#111;'> 660B </span>","children":null,"spread":false},{"title":"Scaler.py <span style='color:#111;'> 1.50KB </span>","children":null,"spread":false}],"spread":true},{"title":"ML_Gradient_Descent","children":[{"title":"LR_GD_class.py <span style='color:#111;'> 4.25KB </span>","children":null,"spread":false},{"title":"sklearn_SGD.py <span style='color:#111;'> 652B </span>","children":null,"spread":false},{"title":"Gradient_Descent.py <span style='color:#111;'> 1010B </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"LR_GD_class.cpython-37.pyc <span style='color:#111;'> 4.15KB </span>","children":null,"spread":false}],"spread":true},{"title":"random_GD_class.py <span style='color:#111;'> 2.70KB </span>","children":null,"spread":false},{"title":".idea","children":[{"title":"$CACHE_FILE$ <span style='color:#111;'> 220B </span>","children":null,"spread":false},{"title":"misc.xml <span style='color:#111;'> 188B </span>","children":null,"spread":false},{"title":"modules.xml <span style='color:#111;'> 297B </span>","children":null,"spread":false},{"title":"ML_Gradient_Descent.iml <span style='color:#111;'> 464B </span>","children":null,"spread":false},{"title":"workspace.xml <span style='color:#111;'> 5.10KB </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"profiles_settings.xml <span style='color:#111;'> 174B </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"LR_Gradient_Descent.py <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false},{"title":"debug_GD.py <span style='color:#111;'> 1.34KB </span>","children":null,"spread":false}],"spread":true},{"title":"ML_PCA","children":[{"title":"__pycache__","children":[{"title":"PCA_class.cpython-37.pyc <span style='color:#111;'> 2.50KB </span>","children":null,"spread":false}],"spread":true},{"title":"sklearn_PCA.py <span style='color:#111;'> 1.21KB </span>","children":null,"spread":false},{"title":"digits_PCA.py <span style='color:#111;'> 1.43KB </span>","children":null,"spread":false},{"title":".idea","children":[{"title":"ML_PCA.iml <span style='color:#111;'> 464B </span>","children":null,"spread":false},{"title":"$CACHE_FILE$ <span style='color:#111;'> 220B </span>","children":null,"spread":false},{"title":"misc.xml <span style='color:#111;'> 188B </span>","children":null,"spread":false},{"title":"modules.xml <span style='color:#111;'> 271B </span>","children":null,"spread":false},{"title":"workspace.xml <span style='color:#111;'> 6.03KB </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"profiles_settings.xml <span style='color:#111;'> 174B </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"PCA_class.py <span style='color:#111;'> 2.18KB </span>","children":null,"spread":false},{"title":"yingshe.py <span style='color:#111;'> 626B </span>","children":null,"spread":false},{"title":"PCA.py <span style='color:#111;'> 2.03KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明