基于YOLOv8和DEEPSort的多目标检测跟踪系统:包含56组测试视频、使用visdrone数据集、pyqt5界面设计及详细环境部署与算法原理介绍

上传者: RVZpitaxrSlR | 上传时间: 2025-10-27 14:02:29 | 文件大小: 1.13MB | 文件类型: ZIP
内容概要:本文详细介绍了一个基于YOLOv8和DEEPSort的多目标检测跟踪系统。该系统使用VisDrone数据集进行训练和测试,包含56组测试视频,涵盖了行人和车辆等多种目标类型。系统采用PyQt5设计图形用户界面,提供了详细的环境部署说明和算法原理介绍。主要内容包括:数据集配置、YOLOv8模型加载与检测框格式转换、DeepSORT追踪模块初始化及其参数设置、PyQt5界面设计与线程管理以及环境部署的最佳实践。此外,还讨论了系统的性能优化方法,如将检测帧率限制在15fps以确保实时处理能力。 适合人群:对计算机视觉、深度学习和多目标跟踪感兴趣的开发者和技术研究人员。 使用场景及目标:适用于需要构建高效多目标检测和跟踪系统的应用场景,如智能交通监控、安防监控等领域。目标是帮助用户快速搭建并理解多目标检测跟踪系统的工作原理,同时提供实用的操作指导。 其他说明:文中提到的系统在VisDrone数据集的商场场景测试视频中表现出色,能够达到28fps的速度,并显著减少ID切换次数。然而,在极端遮挡情况下仍存在一些挑战,未来可以通过引入后处理模块进一步改进。

文件下载

资源详情

[{"title":"( 2 个子文件 1.13MB ) 基于YOLOv8和DEEPSort的多目标检测跟踪系统:包含56组测试视频、使用visdrone数据集、pyqt5界面设计及详细环境部署与算法原理介绍","children":[{"title":"基于YOLOv8和DEEPSort的多目标检测跟踪系统:包含56组测试视频、使用visdrone数据.docx <span style='color:#111;'> 37.37KB </span>","children":null,"spread":false},{"title":"863653504855.pdf <span style='color:#111;'> 127.82KB </span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明