Python-电信用户流失预测

上传者: Mrrunsen | 上传时间: 2024-06-28 13:06:06 | 文件大小: 10.88MB | 文件类型: ZIP
项目概况 开发环境:Jupyter Notebook(Anaconda3的应用包下) 项目描述 一、获取数据集并预处理 在网上(例如Kaggle)下载数据集,读入数据并进行数据预处理。 二、根据特征群进行可视化分析 数据总体分成三大特征群,逐一分析各特征群下,每个特征在特征群中的重要程度,在客户流失因素上的重要程度。对数据进行可视化分析,通过饼状图的对比,对各项特征指标有一个直观的清晰的 认识。 三、特征工程与类别平衡 数据预测前一系列处理,先进行特征工程处理,结合皮尔逊相关系数,把无用特征进行剔除,完善字符编码格式。再处理类别不平衡的问题(正负样本数相差较多,易导致数据倾斜或不准确)。 四、模型使用与评估 使用机器学习模型与模型评估方式,用K折交叉验证计算方式,分别对逻辑回归,随机森林,AdaBoost,XGBoost模型进行评估,得出预测模型的准确度,后续选择其中之一进行实际预测,并输出模型中的特征重要性。 五、总结分析与制定决策 总结分析,合并各客户的预测流失率与真实流失率,形成关系表。运营商可以根据分组情况的结果设定阈值并进行决策,从而确定分界点进行客户召回措施。

文件下载

资源详情

[{"title":"( 5 个子文件 10.88MB ) Python-电信用户流失预测\n","children":[{"title":"data-predict-master","children":[{"title":"回归森林123.ipynb <span style='color:#111;'> 649.36KB </span>","children":null,"spread":false},{"title":"python答辩.ppt.pptx <span style='color:#111;'> 10.46MB </span>","children":null,"spread":false},{"title":"database","children":[{"title":"Telco-Customer-Churn.csv <span style='color:#111;'> 947.71KB </span>","children":null,"spread":false}],"spread":true},{"title":"回归森林123.py <span style='color:#111;'> 21.25KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明