AI Choreographer 的模型实现.rar

上传者: Gefangenes | 上传时间: 2023-08-14 15:20:49 | 文件大小: 70KB | 文件类型: RAR
最近,英伟达宣布了该公司在人工智能(AI)研究领域的诸多进展。比如本月早些时候,该公司就与 Hackster 合作,在 Edge 挑战赛上介绍了自家的 AI 。 其能够利用 Jetson Nano 开发者套件,打造基于神经网络的新模型。同时,英伟达在 11 月发布了多模式 AI 软件开发套件 Jarvis,能够将多种传感器整合到一个系统中。此外,该公司设计了一种新算法的原型,可帮助机器人拾取任意物体。 不过本文要为大家介绍的,则是英伟达在 NeurIPS 2019 上推出的一种基于深度学习的新模型。它能够根据输入的音乐,自动生成合适的舞蹈动作。 这款由加州大学和默塞德大学合作开发的能够自动编舞的软件,亦被称作 AI Choreographer 。 尽管表面上看起来并不难,但研究团队注意到:测量音乐和舞蹈之间的精确相关性,仍需考虑诸多的变量,比如音乐的节拍和风格。 为此,研究团队收集了三种具有代表性的舞蹈类别,分别是芭蕾舞、尊巴舞、以及嘻哈。在分析了 36.1 万段舞蹈剪辑后,研究人员再通过训练系统来使用对抗网络(GAN)。

文件下载

资源详情

[{"title":"( 52 个子文件 70KB ) AI Choreographer 的模型实现.rar","children":[{"title":"ai_choreographer-main","children":[{"title":"evaluator.py <span style='color:#111;'> 2.89KB </span>","children":null,"spread":false},{"title":"mint","children":[{"title":"utils","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"inputs_util_test.py <span style='color:#111;'> 2.07KB </span>","children":null,"spread":false},{"title":"config_util.py <span style='color:#111;'> 3.36KB </span>","children":null,"spread":false},{"title":"inputs_util.py <span style='color:#111;'> 4.66KB </span>","children":null,"spread":false}],"spread":true},{"title":"ctl","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"single_task_evaluator_test.py <span style='color:#111;'> 2.10KB </span>","children":null,"spread":false},{"title":"single_task_trainer_test.py <span style='color:#111;'> 1.97KB </span>","children":null,"spread":false},{"title":"single_task_evaluator.py <span style='color:#111;'> 3.64KB </span>","children":null,"spread":false},{"title":"single_task_trainer.py <span style='color:#111;'> 8.10KB </span>","children":null,"spread":false}],"spread":true},{"title":"core","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"base_model_util.py <span style='color:#111;'> 7.85KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 2.57KB </span>","children":null,"spread":false},{"title":"base_models.py <span style='color:#111;'> 5.95KB </span>","children":null,"spread":false},{"title":"fact_model_test.py <span style='color:#111;'> 2.15KB </span>","children":null,"spread":false},{"title":"base_models_test.py <span style='color:#111;'> 1.49KB </span>","children":null,"spread":false},{"title":"model_builder.py <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"multi_modal_model.py <span style='color:#111;'> 2.02KB </span>","children":null,"spread":false},{"title":"multi_modal_model_util.py <span style='color:#111;'> 2.03KB </span>","children":null,"spread":false},{"title":"metrics_test.py <span style='color:#111;'> 1.19KB </span>","children":null,"spread":false},{"title":"fact_model.py <span style='color:#111;'> 6.24KB </span>","children":null,"spread":false},{"title":"learning_schedules.py <span style='color:#111;'> 6.62KB </span>","children":null,"spread":false},{"title":"learning_schedules_test.py <span style='color:#111;'> 1.47KB </span>","children":null,"spread":false},{"title":"inputs.py <span style='color:#111;'> 4.48KB </span>","children":null,"spread":false}],"spread":false},{"title":"protos","children":[{"title":"pipeline.proto <span style='color:#111;'> 1.20KB </span>","children":null,"spread":false},{"title":"dataset_pb2.py <span style='color:#111;'> 15.83KB </span>","children":null,"spread":false},{"title":"dataset.proto <span style='color:#111;'> 2.47KB </span>","children":null,"spread":false},{"title":"eval_pb2.py <span style='color:#111;'> 9.00KB </span>","children":null,"spread":false},{"title":"train.proto <span style='color:#111;'> 3.43KB </span>","children":null,"spread":false},{"title":"preprocessor_pb2.py <span style='color:#111;'> 3.51KB </span>","children":null,"spread":false},{"title":"pipeline_pb2.py <span style='color:#111;'> 5.40KB </span>","children":null,"spread":false},{"title":"model_pb2.py <span style='color:#111;'> 34.38KB </span>","children":null,"spread":false},{"title":"model.proto <span style='color:#111;'> 3.51KB </span>","children":null,"spread":false},{"title":"preprocessor.proto <span style='color:#111;'> 895B </span>","children":null,"spread":false},{"title":"train_pb2.py <span style='color:#111;'> 24.13KB </span>","children":null,"spread":false},{"title":"eval.proto <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"orbit <span style='color:#111;'> 28B </span>","children":null,"spread":false},{"title":"tools","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"bvh_writer.py <span style='color:#111;'> 7.48KB </span>","children":null,"spread":false},{"title":"calculate_scores.py <span style='color:#111;'> 8.67KB </span>","children":null,"spread":false},{"title":"templates","children":[{"title":"smpl_header.txt <span style='color:#111;'> 3.11KB </span>","children":null,"spread":false}],"spread":true},{"title":"preprocessing.py <span style='color:#111;'> 6.94KB </span>","children":null,"spread":false},{"title":"extract_aist_features.py <span style='color:#111;'> 2.28KB </span>","children":null,"spread":false},{"title":"conversion_util.py <span style='color:#111;'> 4.26KB </span>","children":null,"spread":false}],"spread":true},{"title":"新建文本文档.txt <span style='color:#111;'> 19B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 11.09KB </span>","children":null,"spread":false},{"title":"configs","children":[{"title":"fact_v5_deeper_t10_cm12.config <span style='color:#111;'> 2.30KB </span>","children":null,"spread":false}],"spread":true},{"title":"trainer.py <span style='color:#111;'> 6.37KB </span>","children":null,"spread":false},{"title":"CONTRIBUTING.md <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false},{"title":".gitmodules <span style='color:#111;'> 95B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.21KB </span>","children":null,"spread":false},{"title":"third_party","children":[{"title":"tf_models","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 2.52KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明