基于yolov5算法实现绝缘子识别检测源码+模型文件+评估指标曲线+使用说明.zip

上传者: DeepLearning_ | 上传时间: 2022-11-29 16:27:59 | 文件大小: 41.79MB | 文件类型: ZIP
1、基于yolov5算法实现绝缘子识别检测源码+模型文件+评估指标曲线+使用说明 2、附有训练、loss(损失值)下降曲线、Recall(召回率)曲线、precision(精确度)曲线、mAP等评估指标曲线 3、迭代200次,模型拟合较好。 4、识别类别只有“绝缘子”一类 【备注】有相关使用问题,可以私信留言跟博主沟通。

文件下载

资源详情

[{"title":"( 79 个子文件 41.79MB ) 基于yolov5算法实现绝缘子识别检测源码+模型文件+评估指标曲线+使用说明.zip","children":[{"title":"基于yolov5算法实现绝缘子识别检测源码+模型文件+评估指标曲线+使用说明","children":[{"title":"yolov5_code","children":[{"title":"models","children":[{"title":"common.py <span style='color:#111;'> 7.06KB </span>","children":null,"spread":false},{"title":"yolo.py <span style='color:#111;'> 11.98KB </span>","children":null,"spread":false},{"title":"hub","children":[{"title":"yolov3-spp.yaml <span style='color:#111;'> 1.49KB </span>","children":null,"spread":false},{"title":"yolov5-fpn.yaml <span style='color:#111;'> 1.21KB </span>","children":null,"spread":false},{"title":"yolov5-panet.yaml <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false}],"spread":true},{"title":"yolov5s.yaml <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"experimental.cpython-36.pyc <span style='color:#111;'> 6.62KB </span>","children":null,"spread":false},{"title":"common.cpython-38.pyc <span style='color:#111;'> 8.50KB </span>","children":null,"spread":false},{"title":"yolo.cpython-36.pyc <span style='color:#111;'> 9.64KB </span>","children":null,"spread":false},{"title":"__init__.cpython-38.pyc <span style='color:#111;'> 147B </span>","children":null,"spread":false},{"title":"experimental.cpython-38.pyc <span style='color:#111;'> 6.48KB </span>","children":null,"spread":false},{"title":"common.cpython-36.pyc <span style='color:#111;'> 8.66KB </span>","children":null,"spread":false},{"title":"__init__.cpython-36.pyc <span style='color:#111;'> 137B </span>","children":null,"spread":false},{"title":"yolo.cpython-38.pyc <span style='color:#111;'> 9.54KB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"yolov5x.yaml <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false},{"title":"yolov5l.yaml <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false},{"title":"export.py <span style='color:#111;'> 3.67KB </span>","children":null,"spread":false},{"title":"yolov5m.yaml <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false},{"title":"experimental.py <span style='color:#111;'> 5.73KB </span>","children":null,"spread":false}],"spread":false},{"title":"runs","children":[{"title":"evolve","children":[{"title":"opt.yaml <span style='color:#111;'> 466B </span>","children":null,"spread":false},{"title":"hyp.yaml <span style='color:#111;'> 356B </span>","children":null,"spread":false},{"title":"weights","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"sotabench.py <span style='color:#111;'> 13.94KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"coco.yaml <span style='color:#111;'> 1.69KB </span>","children":null,"spread":false},{"title":"hyp.scratch.yaml <span style='color:#111;'> 1.53KB </span>","children":null,"spread":false},{"title":"hyp.finetune.yaml <span style='color:#111;'> 846B </span>","children":null,"spread":false},{"title":"voc.yaml <span style='color:#111;'> 735B </span>","children":null,"spread":false},{"title":"coco128.yaml <span style='color:#111;'> 1.50KB </span>","children":null,"spread":false},{"title":"scripts","children":[{"title":"get_coco.sh <span style='color:#111;'> 935B </span>","children":null,"spread":false},{"title":"get_voc.sh <span style='color:#111;'> 4.28KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"onnx.py <span style='color:#111;'> 413B </span>","children":null,"spread":false},{"title":"test.py <span style='color:#111;'> 13.83KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 27.59KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"test.cpython-38.pyc <span style='color:#111;'> 8.67KB </span>","children":null,"spread":false},{"title":"test.cpython-36.pyc <span style='color:#111;'> 8.71KB </span>","children":null,"spread":false},{"title":"onnx.cpython-38.pyc <span style='color:#111;'> 559B </span>","children":null,"spread":false}],"spread":true},{"title":"detect.py <span style='color:#111;'> 7.66KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 569B </span>","children":null,"spread":false},{"title":"inference","children":[{"title":"images","children":[{"title":"1.jpg <span style='color:#111;'> 34.34KB </span>","children":null,"spread":false}],"spread":true},{"title":"output","children":[{"title":"1.jpg <span style='color:#111;'> 75.01KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"weights","children":null,"spread":false},{"title":"utils","children":[{"title":"__pycache__","children":[{"title":"activations.cpython-36.pyc <span style='color:#111;'> 3.35KB </span>","children":null,"spread":false},{"title":"torch_utils.cpython-36.pyc <span style='color:#111;'> 8.49KB </span>","children":null,"spread":false},{"title":"activations.cpython-38.pyc <span style='color:#111;'> 3.32KB </span>","children":null,"spread":false},{"title":"general.cpython-38.pyc <span style='color:#111;'> 41.09KB </span>","children":null,"spread":false},{"title":"google_utils.cpython-36.pyc <span style='color:#111;'> 2.68KB </span>","children":null,"spread":false},{"title":"__init__.cpython-38.pyc <span style='color:#111;'> 146B </span>","children":null,"spread":false},{"title":"torch_utils.cpython-38.pyc <span style='color:#111;'> 8.56KB </span>","children":null,"spread":false},{"title":"datasets.cpython-36.pyc <span style='color:#111;'> 27.41KB </span>","children":null,"spread":false},{"title":"datasets.cpython-38.pyc <span style='color:#111;'> 27.32KB </span>","children":null,"spread":false},{"title":"google_utils.cpython-38.pyc <span style='color:#111;'> 2.72KB </span>","children":null,"spread":false},{"title":"general.cpython-36.pyc <span style='color:#111;'> 41.43KB </span>","children":null,"spread":false},{"title":"__init__.cpython-36.pyc <span style='color:#111;'> 136B </span>","children":null,"spread":false}],"spread":false},{"title":"general.py <span style='color:#111;'> 53.10KB </span>","children":null,"spread":false},{"title":"datasets.py <span style='color:#111;'> 38.31KB </span>","children":null,"spread":false},{"title":"evolve.sh <span style='color:#111;'> 747B </span>","children":null,"spread":false},{"title":"activations.py <span style='color:#111;'> 2.13KB </span>","children":null,"spread":false},{"title":"torch_utils.py <span style='color:#111;'> 8.67KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"google_app_engine","children":[{"title":"additional_requirements.txt <span style='color:#111;'> 105B </span>","children":null,"spread":false},{"title":"Dockerfile <span style='color:#111;'> 821B </span>","children":null,"spread":false},{"title":"app.yaml <span style='color:#111;'> 173B </span>","children":null,"spread":false}],"spread":false},{"title":"google_utils.py <span style='color:#111;'> 4.85KB </span>","children":null,"spread":false}],"spread":true},{"title":"yolov5s.pt <span style='color:#111;'> 14.48MB </span>","children":null,"spread":false},{"title":"hubconf.py <span style='color:#111;'> 3.90KB </span>","children":null,"spread":false}],"spread":false},{"title":"使用说明.txt <span style='color:#111;'> 1.06KB </span>","children":null,"spread":false},{"title":"exp_jueyuanzi","children":[{"title":"opt.yaml <span style='color:#111;'> 464B </span>","children":null,"spread":false},{"title":"results.png <span style='color:#111;'> 242.44KB </span>","children":null,"spread":false},{"title":"test_batch0_pred.jpg <span style='color:#111;'> 289.54KB </span>","children":null,"spread":false},{"title":"train_batch1.jpg <span style='color:#111;'> 325.67KB </span>","children":null,"spread":false},{"title":"hyp.yaml <span style='color:#111;'> 356B </span>","children":null,"spread":false},{"title":"labels.png <span style='color:#111;'> 286.93KB </span>","children":null,"spread":false},{"title":"precision-recall_curve.png <span style='color:#111;'> 38.17KB </span>","children":null,"spread":false},{"title":"test_batch0_gt.jpg <span style='color:#111;'> 283.87KB </span>","children":null,"spread":false},{"title":"train_batch2.jpg <span style='color:#111;'> 324.73KB </span>","children":null,"spread":false},{"title":"labels_correlogram.png <span style='color:#111;'> 264.51KB </span>","children":null,"spread":false},{"title":"train_batch0.jpg <span style='color:#111;'> 318.67KB </span>","children":null,"spread":false},{"title":"weights","children":[{"title":"best.pt <span style='color:#111;'> 14.09MB </span>","children":null,"spread":false},{"title":"last.pt <span style='color:#111;'> 14.09MB </span>","children":null,"spread":false}],"spread":false},{"title":"results.txt <span style='color:#111;'> 17.70KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明