深度学习论文大全。。。。

上传者: DazeAJD | 上传时间: 2022-10-06 17:05:11 | 文件大小: 69.87MB | 文件类型: ZIP
深度学习论文大全。。。。

文件下载

资源详情

[{"title":"( 47 个子文件 69.87MB ) 深度学习论文大全。。。。","children":[{"title":"Detection","children":[{"title":"DetNet.pdf <span style='color:#111;'> 3.06MB </span>","children":null,"spread":false},{"title":"YOLOX.pdf <span style='color:#111;'> 851.18KB </span>","children":null,"spread":false},{"title":"YOLOv3.pdf <span style='color:#111;'> 2.34MB </span>","children":null,"spread":false},{"title":"YOLOv7.pdf <span style='color:#111;'> 2.16MB </span>","children":null,"spread":false},{"title":"YOLOv4.pdf <span style='color:#111;'> 3.76MB </span>","children":null,"spread":false},{"title":"YOLOv6.pdf <span style='color:#111;'> 1.03MB </span>","children":null,"spread":false}],"spread":true},{"title":"How to Read a Paper.pdf <span style='color:#111;'> 103.34KB </span>","children":null,"spread":false},{"title":"Segmentation","children":[{"title":"Deeplabv3+.pdf <span style='color:#111;'> 4.00MB </span>","children":null,"spread":false},{"title":"Deeplabv3.pdf <span style='color:#111;'> 2.72MB </span>","children":null,"spread":false}],"spread":true},{"title":"Pruning","children":[{"title":"Autoslim.pdf <span style='color:#111;'> 696.15KB </span>","children":null,"spread":false}],"spread":true},{"title":"Backbone","children":[{"title":"MobileNetV2.pdf <span style='color:#111;'> 1.47MB </span>","children":null,"spread":false},{"title":"EfficientNet.pdf <span style='color:#111;'> 903.08KB </span>","children":null,"spread":false},{"title":"ShufflenetV2.pdf <span style='color:#111;'> 1.33MB </span>","children":null,"spread":false},{"title":"CSPNet.pdf <span style='color:#111;'> 1.45MB </span>","children":null,"spread":false}],"spread":true},{"title":"Distillation","children":[{"title":"Channel-wise Knowledge Distillation for Dense Prediction.pdf <span style='color:#111;'> 5.21MB </span>","children":null,"spread":false}],"spread":true},{"title":"re-ID","children":[{"title":"Solving Inefficiency of Self-supervised Representation Learning.pdf <span style='color:#111;'> 1.06MB </span>","children":null,"spread":false}],"spread":true},{"title":"NAS","children":[{"title":"FBNetV5.pdf <span style='color:#111;'> 2.45MB </span>","children":null,"spread":false},{"title":"NAS-FPN.pdf <span style='color:#111;'> 1.38MB </span>","children":null,"spread":false},{"title":"NAS-FCOS.pdf <span style='color:#111;'> 794.31KB </span>","children":null,"spread":false},{"title":"Fast Hardware-aware Neural Architecture Search.pdf <span style='color:#111;'> 941.49KB </span>","children":null,"spread":false},{"title":"Auto-DeepLab.pdf <span style='color:#111;'> 862.44KB </span>","children":null,"spread":false},{"title":"A Comprehensive Survey of Neural Architecture Search Challenges and Solutions.pdf <span style='color:#111;'> 2.29MB </span>","children":null,"spread":false},{"title":"Learning Strides in Convolutional Neural Networks.pdf <span style='color:#111;'> 1.10MB </span>","children":null,"spread":false},{"title":"DetNAS.pdf <span style='color:#111;'> 1.38MB </span>","children":null,"spread":false},{"title":"DARTS.pptx <span style='color:#111;'> 1.68MB </span>","children":null,"spread":false},{"title":"ProxylessNAS.pdf <span style='color:#111;'> 1.89MB </span>","children":null,"spread":false},{"title":"Neural Architecture Search-A Survey.pdf <span style='color:#111;'> 501.88KB </span>","children":null,"spread":false},{"title":"Neural Architecture Search without Training.pdf <span style='color:#111;'> 1.77MB </span>","children":null,"spread":false},{"title":"nn-Meter-Towards-Accurate-Latency-Prediction-of-Deep-Learning-Model-Inference-on-Diverse-Edge-Devices.pdf <span style='color:#111;'> 1.38MB </span>","children":null,"spread":false},{"title":"FairNAS.pdf <span style='color:#111;'> 4.56MB </span>","children":null,"spread":false},{"title":"Searching for Efficient Multi-Scale Architectures for Dense Image Prediction.pdf <span style='color:#111;'> 4.02MB </span>","children":null,"spread":false},{"title":"Hardware-Aware Neural Architecture Search-Survey and Taxonomy.pdf <span style='color:#111;'> 211.83KB </span>","children":null,"spread":false},{"title":"EfficientDet.pdf <span style='color:#111;'> 736.72KB </span>","children":null,"spread":false},{"title":"FBNet.pdf <span style='color:#111;'> 712.23KB </span>","children":null,"spread":false},{"title":"HW-NAS-Bench-Hardware-Aware Neural Architecture Search Benchmark.pdf <span style='color:#111;'> 1.82MB </span>","children":null,"spread":false},{"title":"MnasNet.pdf <span style='color:#111;'> 1.31MB </span>","children":null,"spread":false},{"title":"ScaleNet.pdf <span style='color:#111;'> 2.42MB </span>","children":null,"spread":false},{"title":"FBNetV2.pdf <span style='color:#111;'> 507.08KB </span>","children":null,"spread":false},{"title":"MixConv.pdf <span style='color:#111;'> 622.66KB </span>","children":null,"spread":false},{"title":"FBNetV3.pdf <span style='color:#111;'> 967.80KB </span>","children":null,"spread":false},{"title":"SPOS.pdf <span style='color:#111;'> 1.08MB </span>","children":null,"spread":false},{"title":"NAS-Bench-201.pdf <span style='color:#111;'> 3.32MB </span>","children":null,"spread":false},{"title":"DARTS- DIFFERENTIABLE ARCHITECTURE SEARCH.pdf <span style='color:#111;'> 621.86KB </span>","children":null,"spread":false},{"title":"Demystifying the Neural Tangent Kernel from a Practical Perspective.pdf <span style='color:#111;'> 1.65MB </span>","children":null,"spread":false},{"title":"Once for all.pdf <span style='color:#111;'> 3.45MB </span>","children":null,"spread":false},{"title":"MobileNetV3.pdf <span style='color:#111;'> 535.37KB </span>","children":null,"spread":false},{"title":"HR-NAS.pdf <span style='color:#111;'> 917.57KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明