上传者: CSharp_czr
|
上传时间: 2021-07-20 12:24:40
|
文件大小: 302KB
|
文件类型: PDF
:针对经典的C均值聚类算法以及模糊C均值聚类算法所存在的两个方面的问题:一是算法对初始聚类中心的过
分依赖性,通常的聚类算法往往对于不同的初始聚类中心会得到不同的聚类结果;二是算法需要预先知道实际的聚类数
目,而在实际应用中,聚类数目却是未知的。基于此提出了模糊C均值聚类算法的一种改进算法,即在标准的模糊C均值
聚类算法的基础上,给目标函数加入了一个惩罚项,使得上述问题得以解决。并通过仿真实验证实了新算法的可行性和
有效性