与传统逆变器相比,文章提出的改进型Z源逆变器不仅可以减小电容和电感,同时电容的电压应力得到有效降低。文中首先对其电路工作原理进行分析,得到各参数的设计方法,再由计算及仿真,推算出开关管上的电流应力确实有效降低,并在Simulink中验证了该改进型Z源设计的合理性。
2023-03-26 09:15:23 456KB SIMULINK 改进Z源逆变器 电容 文章
1
本文主要讲了一下电容器自动投切控制电路图。
2023-03-24 15:54:49 37KB 电容器 电路图 自动控制 文章
1
在蓄电池性能监测过程中,接收的信号都是比较微弱的低频信号,而且为了得到更多的信息,往往向蓄电池施加多个频率的激励。因此,设计带通滤波器以提高抗干扰能力,而且中心频率要可调。开关电容滤波器可实现低通、高通、带通和带阻滤波功能 ,而且中心频率可调节,文中采用了LTC1068-200开关电容滤波器集成模块进行电路设计 ,时钟频率由CD4046锁相环控制。仿真结果表明本文设计的滤波器通带宽度可以达到5 Hz,中心频率从 10 Hz到 1 kHz可调节 ,满足实际需要。
1
目前,加速度计在惯性导航、大地勘探等领域都已得到了广泛的应用。在深空探测的大背景下,用于测量重力梯度的加速度计必须具有更小量程和更高的分辨率。静电悬浮式电容差分加速度计是可选方案之一。此类加速度计的T作原理与经典的弹簧振子系统相似。研究与检测质量块、伺服控制的静电反馈力和空气阻尼相关的各个参数对系统指标的影响将有助于此类加速度计的设计。首先介绍电容差分式加速度计的结构设计和工作原理,并从理论上比较此类加速度计与经典弹簧振子系统的异同。在此基础上以弹簧振子系统为原型,建立此类加速度计的动力学模型,并以这个动
2023-03-20 10:57:57 2.91MB 工程技术 论文
1
三端电容器的原理 引线电感与电容一起构成了一个T形低通滤波器 在引线上安装两个磁珠滤波效果更好 地线电感起着不良作用 三端电容 普通电容 30 70 1GHz 20 60 40 三端电容:这是目前比较流行的方法。与普通电容不同的是,三端电容的一个电极上有两根引线,使用时,这两个引线串联在需要滤波的导线中。这样,导线电感与电容刚好构成了一个T形滤波器,并且消除了一个电极上的串联电感。因此三端电容比普通电容具有更高的谐振频率和滤波效果。 可以在三端电容两个相连的引线上套两个铁氧体磁主,进一步提高T形滤波器的效果。这就是常说的片状滤波器。
2023-03-15 08:56:11 632KB EMC
1
Altium Designer 元器件库合集版是收集整理了市面上大部分元器件的原理图库和PCB元件库以及集成库等,共几万款元件库,包含了大部分3D模型封装库以及3D图片,数量之多,都可以直接使用,用户如果喜欢收集各种库文件,可以选择此款.此款几乎是市面上最多的元件库了,你懂的!!!
2023-03-11 10:53:48 690.47MB 3d AltiumDesigner AD 元件库
1
寄生电容是指电感,电阻,芯片引脚等在高频情况下表现出来的电容特性。实际上,一个电阻等效于一个电容,一个电感,一个电阻的串联,低频情况下表现不明显,而高频情况下,等效值会增大。在计算中我们要考虑进去。  ESL就是等效电感,ESR就是等效电阻。不管是电阻,电容,电感,还是二极管,三极管,MOS管,还有IC,在高频情况下要考虑到等效电容值,电感值。  我们可看做是我们的各个管脚之间都是串接了一个电容在其旁边,如图所示,由于MOS管背部存在寄生电容,这会影响到我们的MOS管的开关断的时间。  故此,如果MOS的开关速度很快的情况下,建议选型优先考虑到本身MOS管器件的内部的寄生电容的影响。  如图所
1
LLC的优势之一就是能够在比较宽的负载范围内实现原边MOSFET的零电压开通(ZVS),MOSFET的开通损耗理论上就降为零了。要保证LLC原边MOSFET的ZVS,需要满足以下三个基本条件:   1)上下开关管50%占空比,1800对称的驱动电压波形;   2)感性谐振腔并有足够的感性电流;   3)要有足够的死区时间维持ZVS。   图a)是典型的LLC串联谐振电路。图b)是感性负载下MOSFET的工作波形。由于感性负载下,电流相位上会超前电压,因此保证了MOSFET运行的ZVS。要保证MOSFET运行在感性区,谐振电感上的谐振电流必须足够大,以确保MOSFET源漏间等效的寄生电容
1
说到电子产品,电容算是一种常用的器件了,无论电源电路、音频电路、射频电路都统统离不开它,今天就来一起分享下电容的基础知识。
2023-03-08 13:03:14 79KB 电容 基本知识 参数 文章
1
1. 目的 指导所有与生产相关的人员正确辩别元件极性及PCB 丝印方向,避免认识错误造成生 产中批量性品质异常发生。 2. 范围 本文件适用于作为生产相关人员教育培训资料,并为生产过程中相关人员确定元件极 性及PCB 丝印方向提供借鉴参考。 3. 说明 3.1 极性元件:在电子产品电路中电流按一定的方向从元件的管脚流向另一只管脚,电压正 负极不同,此类元件为有极性元件。 3.2 方向性元件:因产品功能设计要求,电子产品电路中按一定方向接入并有方向要求的元 件。 4. 内容 4.1 常见有极性电子元件种类: 4.1.1 电容:电解电容、钽电容、法拉电容等 4.1.2 二极管:除双向二极管外一般都有极性,按用途分类较常见的有整流二极管、稳 压二极管、检波二极管、TVS 管(瞬态抑制二极管)等 4.1.3 LED:发光二极管、双色发光二极管、红外发射管、红外接收头等 4.1.4 三极管(三端稳压):各种封装三极管(TO-92、92L、126、220、247 等)、霍尔 传感器(霍尔开关)等 4.1.5 其它:桥堆、蜂鸣器、电池、电池脚座、数码管、点阵屏等 4.2 常见有方向性电子元件种类: 4.2.1 电阻:可调电阻、排阻等 4.2.2 线圈:滤波电感、变压器、互感器(互感线圈)、贴片功率电感等 4.2.3 开关:拨码开关、船形开关、按键开关等 4.2.4 晶体振荡器 4.2.5 各种封装集成块(IC):较常见的有 SIP(单列直插封装)、DIP(双列直插封装, 含光耦)、SOP(小外型封装)、QFP(四方扁平封装)、PLCC(无线引脚塑料封装)、 SOJ(小外形J 引脚封装)、BGA(球栅阵列封装)等 4.2.6 接插件:牛角插座、电源插座、围墙插座、靠背插座、FCC 排线座、凤凰端子等
1