诱发电位记录示意图 + _ strobe light flashes, elicits evoked potential +EEG: + EP EEG = “single trial” + _
2022-02-10 21:51:18 2.97MB 脑机接口
1
2.1 原始脑电数据的读取和显示 采集到的脑电信号文件为 data.txt,调用 eeg_load.m 文件,即可绘制出脑电样本信号图, 如下图 2 所示。 图2 脑电样本信号图 2.2 脑电信号频谱图及功率谱图的绘制 首先调用 eeg_fft.m 文件,原理是对样本信号进行傅立叶变换 [3],即可获得样本信号的 频谱图,如下图 3 所示。
2022-02-08 14:23:17 1.57MB EEG
1
脑电图分析 使用MNE和Networkx对静止状态eeg数据进行图形分析 清理静止状态数据,并使用相位滞后指数(PLI)创建连接矩阵。 然后,建立一个图,并为进行无偏组比较,导出一个非循环子图,该图连接了所有节点,从而使边缘权重最小(w = 1 / w)。 此子图称为最小生成树。 前处理 导入数据,然后以1-30Hz的频率对其进行过滤(mne滤波器已经使用了零相滤波器)。 设置平均参考。 在执行ICA之前,请检查并排除不良电极。 对原始数据进行首次视觉检查,排除包含明显伪像的段。 计算我将传递给ICA的拒绝阈值 使用Extended-infomax方法运行ICA 目视检查ICA组件,以检查是否有代表眼睛运动或眨眼的组件。 运行应使这些组件高亮的自动过程 申请ICA 创建时期并执行最后的目视检查以排除不良时期。 保存时代连通性矩阵 使用PLI方法计算连接矩阵。 使用这些值
2022-02-03 18:26:40 544KB Python
1
此代码从指定的“bdf”文件中读取指定长度的 EEG 数据。 它比传统的 bdf 阅读器更易于使用,并且不会输出一些不必要的(从作者的角度来看)信息,例如每个 EEG 通道的采样频率。 假设所有 EEG 通道以相同频率采样,由相同滤波器预滤波等等......
2022-02-03 11:56:32 2KB matlab
1
脑电情绪识别 HSE计算机科学学生项目 作者:Soboleva Natalia和Glazkova Ekaterina 脑电信号的准确分类可以为医学研究提供解决方案,以在早期阶段检测异常脑部行为以对其进行威胁。 在这项研究中,我们从另一个角度来看这个任务-情绪识别。 我们设计了卷积神经网络和递归神经网络的联合,使用自动编码器来压缩数据的高维数。 当前项目包括EEG数据处理,并使用AutoEncoder + CNN + RNN进行卷积 前处理 伪影-这是所有非脑源记录的活动的术语。 伪影可分为两类:生理伪影(来自大脑其他部位的虹膜,例如,身体)和外部生理伪影(例如,技术设备的北极)。 为了提取脑电图观察的最重要特征,必须进行预处理。 为了进行数据处理和可视化, 选择了用于人类神经生理数据(包括EEG)的开源Python软件。 在这一领域,有两种主要的最新方法可以处理EEG信号:小波变换和
2022-01-17 14:22:58 3.3MB JupyterNotebook
1
这个包与我们论文的功能和分析相关联: Payam Shahsavari Baboukani, Ghasem Azemi, Boualem Boashash, Paul Colditz, Amir Omidvarnia, 一种新的多变量相位同步测量:在多通道新生儿脑电图分析中的应用, 数字信号处理,第 84 卷,2019 年,第 59-68 页,ISSN 1051-2004 我们承认我们的实施中有以下参考: Matlab 的循环统计工具箱: https : //au.mathworks.com/matlabcentral/fileexchange/10676-circular-statistics-toolbox-directional-statistics Hyper-Torus Synchrony (HTS) 测量来自 M. Al-Khassaweneh、M. Villafañ
2022-01-07 10:08:01 23KB matlab
1
该项目有两部分: 1.预处理: 预处理脚本使用小波变换对EEG信号进行去噪,降低采样频率并将10分钟片段分成15个时间序列。项目的这部分是用MATLAB编写的。该脚本位于source/Preprocessing/Preprocess_data.m下。 2.CNN+LSTM:预处理完成后,将使用此数据训练CNN+LSTM模型。 架构如下图所示: source/DataGenerator.py脚本是一个自定义类,用于将数据批量加载到内存中,而不是一次加载整个数据集。有关该类的更多信息,请参阅脚本中的注释。
2022-01-06 18:07:17 86.76MB matlab python LSTM CNN
欢迎来到EEG深度学习图书馆 EEG-DL是为EEG任务(信号)分类编写的深度学习(DL)库。 它提供了最新的DL算法并不断更新。 目录 贡献 组织机构 文献资料 支持的型号包括 不。 模型 代号 1个 深度神经网络 DNN 2个 卷积神经网络[论文] [教程] 有线电视新闻网 3 深度残差卷积神经网络[论文] ResNet 4 薄残差卷积神经网络[论文] 稀薄的ResNet 5 密集连接的卷积神经网络[论文] 密集网 6 全卷积神经网络[论文] FCN 7 暹罗网络(CNN骨干网)的一键式学习[论文] [教程] 连体网络 8 图卷积神经网络[论文] [演示文稿] [教程] [针对中国读者的GCN / GNN摘要] [针对中国读者的GNN相关算法综述] [图的深度学习文学] GCN /图表CNN 9 图卷积神经网络(来自Reza Amini的纯Py
2022-01-01 22:00:19 379KB deep-learning tensorflow transformers cnn
1
实现脑电信号的情绪分类,1.特征提取方法:自回归(Autoregression,AR),公共空间模式(Common Spatial Pattern ,CSP),离散小波变换(Discrete Wavelet Transform,DWT)和功率谱密度( Power Spectral Density,PSD); 2. 特征分类方法:Bagging、Boosting、AdaBoost
2021-12-30 09:29:18 1.66MB EEG
1
对EEG基本知识及判读
2021-12-23 14:10:57 5.05MB 脑电
1