作为一个电子爱好者,我想有点共享精神。特来分享3.5寸ILI9487 液晶屏资料。 同时附上: 2.2寸TFT液晶屏模块、横屏模块 ILI9342驱动,单片机可驱 12864接口。 全新3.0寸模块,带触摸屏,16:9 240*400分辨率 ILI9327驱动; 全新3.5寸模块 R61581/ILI9487驱动,320*480分辨率,不带触摸屏。 附件内容截图:
2024-10-07 14:43:16 14.58MB ili9342 电路方案
1
### Pspice混合电路仿真教程知识点详述 #### 一、Pspice概述 - **定义**: PSpice是一款由美国OrCAD公司开发的高级电路仿真软件,它源自于SPICE(Simulation Program with Integrated Circuit Emphasis),最初由美国加州大学伯克利分校于1972年开发。 - **发展历程**: SPICE自诞生以来经历了多次升级,1988年被确立为美国国家工业标准。PSpice在此基础上进一步发展,提供了更为强大的功能和更友好的用户界面。 - **应用范围**: PSpice广泛应用于电子工程领域,能够进行模拟电路分析、数字电路分析以及模拟数字混合电路分析。 #### 二、Pspice主要分析功能详解 ##### 1. 直流分析 - **静态工作点分析**: - **原理**: 在此模式下,所有电感被视为短路,电容被视为开路,以确定电路的静态工作点。 - **输出**: 提供每个节点的电压值以及工作点下的有源器件模型参数值。 - **直流小信号传递函数分析**: - **目标**: 计算电路在直流小信号下的输出与输入的比值,同时计算输入电阻和输出电阻。 - **限制**: 电路中不应含有隔直电容。 - **直流扫描分析**: - **应用场景**: 可以绘制各种直流转移特性曲线,如电压或电流与电压源、电流源、温度等的关系。 - **直流小信号灵敏度分析**: - **功能**: 分析电路各元件参数的变化如何影响电路特性。 - **输出**: 归一化的灵敏度值和相对灵敏度,以文本形式呈现。 ##### 2. 交流小信号分析 - **频率响应分析**: - **作用**: 测量传递函数的幅频响应和相频响应。 - **结果**: 可得到电压增益、电流增益、互阻增益、互导增益、输入阻抗和输出阻抗随频率的变化。 - **噪声分析**: - **特点**: 计算输出噪声电平及等效输入噪声电平,并对其进行归一化处理。 - **单位**: V/Hz^(1/2)。 ##### 3. 瞬态分析 - **定义**: 瞬态分析是时域分析的一种,主要用于研究电路对不同信号的瞬态响应。 - **应用**: 可以获取时域波形,并通过快速傅里叶变换(FFT)获得频谱图。 - **傅里叶分析**: 可以获得时域响应的傅里叶分量,包括直流分量、各次谐波分量和非线性谐波失真系数。 ##### 4. 统计分析 - **蒙特卡罗分析**: - **概念**: 评估电路性能在元件参数容差范围内的随机变化。 - **过程**: 参数按照指定的统计规律随机变化,从而模拟实际应用中可能遇到的情况。 - **最坏情况分析**: - **区别**: 与蒙特卡罗分析相比,在最后的分析中,参数按最大容差范围变化,以评估最坏情况下的电路性能。 #### 三、Pspice8.0快速入门指南 - **目标**: 帮助初学者掌握Pspice8.0的基本操作。 - **步骤**: 1. **放置元件**: 使用[Schematic]工具放置所需元件(如电阻、电容等)。 2. **连接导线**: 连接电路中的元件。 3. **设置模拟类型**: 根据需求选择直流、交流或瞬态分析等。 4. **设置Probe**: 定义需要观测的点。 5. **执行模拟**: 开始仿真过程。 6. **观察结果**: 使用Probe工具查看仿真结果。 7. **导出数据**: 将仿真数据导出至其他软件进行进一步处理或绘图。 #### 四、常用元件库简介 - **ANALOG.slb**: 包含常用的被动元件,如电阻、电容、电感等。 - **BREAKOUT.slb**: 提供可调整参数的基本元件。 - **SOURCE.slb**: 包含电源及信号源。 - **PORT.slb**: 包括接地端子和连接器。 - **ERAL.slb**: 常用的半导体元件,特别适用于免费版用户。 通过以上详细介绍,我们可以看出PSpice是一款功能强大且应用广泛的电路仿真工具,适合各类电子工程师和技术人员使用。无论是进行基本的电路分析还是复杂的系统设计,PSpice都能够提供必要的支持和帮助。
2024-10-06 22:22:48 1.23MB Pspice
1
锂电池主动均衡simulink仿真 四节电池 基于buckboost(升降压)拓扑 (还有传统电感均衡+开关电容均衡+双向反激均衡+双层准谐振均衡+环形均衡器+cuk+耦合电感)被动均衡电阻式均衡 、分层架构式均衡以及分层式电路均衡,多层次电路,充放电。
2024-10-06 17:39:34 38KB
1
6自由度机器人自干涉检测完整代码
2024-10-03 16:38:10 5KB 机器人 matlab 模型仿真
1
详细讲述了DFT的原理,以及Mentor的主流DFT inserttion工具
2024-10-01 22:39:00 3.31MB
1
开关电源是电子系统中常见的电源类型,它们使用开关器件快速地切换以控制能量传输效率。开关电源的设计和分析通常包含复杂的非线性问题,传统的手工解析方法很难解决。因此,仿真软件如SPICE(Simulation Program with Integrated Circuit Emphasis)和它的衍生版本PSPICE(Personal Simulation Program with Integrated Circuit Emphasis)在电源技术领域的应用变得至关重要。SPICE软件可以进行模拟开关电源的行为,帮助设计师优化电路设计,预测电路在各种工作条件下的性能。 在开关电源中,开关元件的工作模式分为连续导通模式(CCM)和断续导通模式(DCM)。不同的工作模式会对电源性能有显著影响,因此在设计阶段需要通过仿真来分析和了解这些模式对开关电源性能的影响。在设计和分析开关电源时,仿真可以显著减少实验工作量,提高设计效率,使得在实际搭建电路板之前就能发现设计的潜在问题,并进行优化。 SPICE仿真的一个重要优势是能够模拟开关电源中的非理想元件特性。例如,开关器件在切换过程中会产生噪声、寄生电容和漏电感等效应,这些非理想特性在理论上很难考虑,但它们对电路的实际性能影响巨大。通过在SPICE仿真模型中加入这些非理想元件,可以更准确地反映实际电路的行为,并研究它们对开关电源性能的具体影响。特别地,对于复杂或不完善的理论问题,如谐振转换器设计、漏电感对交叉调节的影响以及电路损耗等问题,SPICE仿真可以提供一种尝试和错误(Trial & Error)的分析手段。 在开关电源设计中,大信号分析往往难以使用解析方法解决,而SPICE软件则能处理这类问题。大信号分析中,数学模型通常会出现动态变量相乘的项,比如导通比与输入电压的乘积。SPICE软件包可以处理这种瞬态非线性二次项,实现对开关电源进行直流分析和交流小信号分析,同时分析开环或闭环系统的瞬态大信号过程,如启动过程或负载电流的大信号分析。此外,SPICE还可以用于仿真具有前馈控制和电流控制的开关电源,以及谐振式转换器等。 要使用SPICE进行开关电源的仿真,首先需要建立功率半导体开关器件和控制电路的专用仿真模型。这种模型包括三个部分:功率半导体开关管模型、等效子电路和子电路仿真程序。开关管模型一般用理想变压器和导通比控制输入端子来表示,控制电路则需用特定符号表示并标明输入输出端子。等效子电路通常由电流源、电压源、电阻、电容等元件组成。子电路仿真程序将子电路拓扑和元件参数输入到计算机中,与SPICE通用电路程序结合使用,便能对开关转换器或开关稳压电源进行仿真分析。 SPICE仿真程序的精确度取决于步长和积分阶次,二者决定了仿真的时间分辨率和精度。通过精心选择这些参数,可以使得仿真结果更加接近实际电路的性能,为硬件实验提供良好的参考。 SPICE和PSPICE仿真是连接开关电源理论设计与实际硬件电路板实验之间的桥梁。它们在提高设计效率、减少实验成本、提前发现潜在问题和验证设计性能方面都发挥着重要作用。通过这些仿真工具的使用,可以有效地缩短产品从概念到市场的时间,提升电源技术设计的整体水平。
2024-09-30 11:53:43 180KB spice PSPICE 开关电源 电源技术
1
### 硅基光电子器件仿真专题:无源光器件的研究与分析 #### 背景 随着信息技术的快速发展,光通信系统对于更高带宽、更低能耗的需求日益增长。硅基光电子技术作为下一代高速光通信的核心技术之一,其发展受到了广泛的关注。硅作为一种成熟的半导体材料,在集成电路制造领域拥有丰富的经验和资源,因此硅基光电子器件不仅能够利用现有的半导体制造工艺,还能够实现与其他电子元件的高度集成,从而显著降低系统成本并提高性能。 在硅基光电子器件的设计和优化过程中,仿真是不可或缺的一环。它不仅可以帮助研究人员理解和预测器件的行为,还可以指导设计过程中的参数选择和结构优化,从而缩短开发周期并降低成本。Macondo和Nuwa是两款由GMPT Technology Company Ltd.自主研发的TCAD仿真软件,它们为硅基光电子器件的设计提供了强大的支持。 #### Macondo 波动光学与电磁波仿真软件 ##### 简介 Macondo是一款专为波动光学和电磁波仿真设计的软件。它采用了先进的数值方法和技术来模拟各种光学现象,特别是在硅基光电子器件的仿真中具有显著优势。 ##### 模型与算法 - **材料折射率和空间折射率扰动模型**:这些模型用于精确描述材料的光学性质,包括其折射率随频率的变化以及在不同空间位置上的变化。 - **材料折射率色散拟合模型**:通过该模型可以准确地模拟材料的色散效应,这对于理解器件在不同波长下的行为至关重要。 - **时域有限差分(FDTD)3D求解器**:FDTD是一种常用的数值方法,用于解决Maxwell方程组,可以模拟电磁波在复杂几何结构中的传播情况。 - **本征模式展开(EME)3D求解器**:适用于模拟波导结构中的光波传播,特别适合处理长距离传输问题。 - **模式求解(FDE)2D求解器**:主要用于求解特定结构中的模式分布和特性,如有效折射率等。 - **总场散射场(TFSF)算法**:通过将入射场和散射场分开计算,可以有效地模拟复杂结构中的电磁场分布。 - **共形网格与非均匀网格算法**:这些算法提高了模拟的精度和效率,尤其是在处理具有不规则形状或复杂结构的器件时更为重要。 - **模式光源注入模型**:用于模拟不同类型的光源注入到器件中的情况,比如激光二极管的注入等。 - **边界条件模型**:包括完美匹配层(PML)、周期性边界条件等,这些模型确保了模拟结果的准确性。 ##### 输出 - **基础电磁特性** - **模式场分布**:显示模式在不同位置上的场分布情况。 - **有效折射率**:反映了波导结构中光波的传播特性。 - **损耗**:衡量光波在传输过程中的能量损失。 - **偏振比**:表示光波偏振态的特性。 - **介质折射率分布**:展示了介质内部折射率的空间分布。 - **电磁场强度与坡印廷矢量**:用于分析能量流的方向和大小。 - **透射率**:衡量光波穿过器件的能力。 - **电磁场的传输特性**:描述了电磁场在器件内部的传播特性。 - **模式光传输的特征参数** - **光波导损耗**:包括弯曲损耗、耦合损耗等,这些损耗对器件的整体性能有重要影响。 - **偏振分束与偏振旋转**:涉及偏振态的变化,对于某些应用(如偏振复用)非常重要。 - **消光比与带宽**:分别反映了器件的选择性和工作范围。 - **多模传输与色散**:多模传输会影响信号质量,而色散则限制了器件的工作速度。 - **串扰与波导尺寸**:串扰是指相邻通道之间的信号干扰,波导尺寸的选择直接影响了器件的性能。 - **单模条件**:满足一定条件下的单模传输是许多高性能器件的要求。 - **多模干涉耦合**:这种现象可以通过调整耦合长度来优化,从而提高器件性能。 - **插入损耗与附加损耗**:这些参数决定了器件的效率。 - **分光比与隔离度**:反映了器件在分离不同波长信号方面的能力。 - **定向耦合**:通过控制耦合长度来调整耦合强度。 - **微环谐振**:涉及到共振频率、自由光谱范围等特性,对于滤波器和传感器等应用至关重要。 - **光栅波导传输**:包括光谱响应、反射峰值、衍射谱等参数,对于光栅器件的性能评估非常关键。 - **亚波长光栅传输**:亚波长光栅能够实现高效的光场控制,对于许多高级应用非常有用。 - **倏逝场增强**:利用倏逝场效应可以提高器件的灵敏度和效率。 - **光子晶体波导传输**:光子晶体波导能够实现对光波的精确控制,对于构建新型光子器件非常有前景。 Macondo和Nuwa TCAD仿真软件为硅基光电子器件的设计提供了全面的支持,通过上述模型和算法的应用,可以有效地预测和优化器件的性能,为实际产品的开发提供重要的理论依据和技术支持。
2024-09-29 11:47:20 8.39MB 无源光器件
1
BAN模拟器用与六面钻文件的仿真
2024-09-27 09:30:12 13.54MB
1
这是拉扎维编著的模拟CMOS集成电路设计的电子版,它详细介绍了模拟集成电路设计的方法。是学习集成电路设计一本必备的教材。复旦大学就是使用这一本教材。 另外,文件较大,所以做了分卷压缩,下载的朋友需要下载下来两个分卷再解压方可使用。
2024-09-26 09:41:17 9.54MB 集成电路 CMOS
1
### 三相三线制的缺相保护电路图详解 #### 一、引言 在电力系统中,三相供电是一种常见的供电方式,它能够提供更稳定、更高效的电力传输。然而,在实际应用过程中,可能会遇到诸如缺相等问题,这些问题如果不加以解决,可能会导致设备损坏甚至引发安全事故。因此,了解并掌握三相三线制中的缺相保护技术至关重要。 #### 二、三相三线制简介 三相三线制是指在三相交流电系统中,仅使用三条导线进行传输的方式,这三条导线分别对应三相交流电的三个相位。相比于四线制(即三相四线制,包含一条中性线),三相三线制没有中性线,适用于对称负载的场合,例如工业用电机等。 #### 三、缺相现象及其危害 **缺相**指的是在三相供电系统中,由于某种原因导致其中一相或两相失去电压的现象。缺相的发生会带来以下问题: - **设备效率降低**:对于三相电动机而言,缺相会导致电机转矩下降,进而影响其工作效率。 - **设备损坏风险增加**:缺相还可能导致电机过热,严重时会造成电机烧毁。 - **安全隐患**:在某些特殊场合,如化工厂等,缺相可能引起更大的安全问题。 #### 四、缺相保护电路的设计原理 为了有效避免上述问题的发生,需要设计合理的缺相保护电路。缺相保护电路的核心在于检测三相电压是否完整,并在检测到缺相时及时采取措施,切断电源或发出警报信号,从而保护设备免受损害。 ##### 1. 电压检测模块 - **工作原理**:通过比较各相电压与设定阈值来判断是否存在缺相情况。 - **实现方法**:可以采用电压互感器或者电压传感器来检测各相电压。 ##### 2. 比较判断模块 - **工作原理**:将检测到的电压值与预设的电压阈值进行比较。 - **实现方法**:利用比较器等电子元件实现电压的比较。 ##### 3. 控制执行模块 - **工作原理**:根据比较判断模块的结果,控制电路的通断。 - **实现方法**:可以通过继电器、接触器等执行机构来切断或恢复电路。 #### 五、具体电路图解析 具体的三相三线制缺相保护电路图通常包含以下几个关键部分: - **输入端**:三相电源的输入端口。 - **电压检测单元**:用于检测每相电压的大小。 - **比较单元**:根据设定的阈值判断是否有缺相发生。 - **控制单元**:一旦检测到缺相,立即动作以保护设备。 #### 六、电路图设计注意事项 在设计三相三线制的缺相保护电路图时,还需要注意以下几个方面: - **可靠性**:确保电路能够在各种环境下稳定工作。 - **安全性**:考虑电路本身的安全性以及对周边环境的影响。 - **经济性**:在满足功能需求的前提下,尽可能降低成本。 - **可维护性**:便于后期的维护和检修。 #### 七、总结 通过对三相三线制缺相保护电路图的学习,我们可以了解到这一技术在保障电力系统安全运行中的重要作用。合理的设计和正确的使用缺相保护电路不仅可以提高设备的使用寿命,还能有效防止因缺相引起的故障,为电力系统的稳定运行提供了有力保障。在未来的技术发展中,缺相保护技术还将不断完善和进步,更好地服务于社会生产和生活。
2024-09-25 19:59:52 46KB 保护电路 硬件设计
1