用于stable diffusion的control net里的seg模型处理; 让你快速查阅对应的颜色代表的物体是什么,快色编辑修改图片里的色块区域,定制你的专属图片; 尤其适合用于ai室内设计。
2024-07-01 15:03:29 27KB 人工智能
1
Python项目中的AI聊天机器人 人工智能聊天机器人是一个用于大学查询的简单自动通信系统。在这里,用户必须将他们的查询作为输入,系统机器人根据问题进行回复。该系统可以起到非常方便、省时的作用,向查询者传递所需的院校信息 如何运行项目? 要运行此项目,您可以在 PC 上安装 Pycharm(用于代码执行)和 Anaconda(用于虚拟环境)
2024-06-25 14:50:39 158KB python 人工智能
1
【急性肾损伤(AKI)】是重症监护病房(ICU)中常见且严重的并发症,影响着大约60%的ICU患者。AKI的发生与较高的短期和长期死亡率及发病率相关,可能导致慢性肾病风险增加,降低长期生存质量和生活品质。由于其复杂的病理生理机制,传统的决策算法在诊断和管理上存在局限。 【人工智能(AI)和深度学习在AKI中的应用】近年来,AI和深度学习模型被广泛应用于AKI的预测、诊断和亚表型分析,以弥补传统方法的不足。这些模型能够处理大量临床数据,更准确地捕捉AKI的复杂动态变化。通过机器学习,可以预测AKI的发展,从而实现早期干预,降低不良后果。 【研究方法】研究者对过去18个月内发表的相关文献进行了系统审查,主要在PubMed数据库中搜索与AKI预测、模型开发和验证相关的文章。他们筛选出46篇全文进行详细评估,最终选择了30项研究,其中27项涉及AKI预测模型,两项专注于AKI亚表型,一项同时涉及两者。 【患者群体与数据来源】研究涵盖了不同来源的患者群体,如单一中心和多中心,最常见的数据源是重症监护医疗信息数据库(MIMIC-III)。研究样本包括综合ICU、脓毒症、手术、糖尿病酮症酸中毒、失血性休克和急性脑损伤患者。AKI的定义主要依据KDIGO标准,部分研究也使用了AKIN标准。 【预测模型】逻辑回归是最常见的建模技术,其次是深度学习模型,如循环神经网络(RNN)、一维卷积神经网络(1D-CNN)和长短期记忆(LSTM)网络。这些模型通过分析时间序列数据,如生理参数和实验室结果,提供了连续、实时的AKI风险预测。深度学习模型在预测性能上表现出优越性,例如,双向LSTM网络、1D-CNN模型等。 【性能评估】模型的性能常用接收器操作特性曲线(AUROC)、灵敏度、特异性、正预测值(PPV)、负预测值(NPV)、准确性和精确率-召回曲线(AUPRC)等指标进行评估。一些模型通过动态分析患者数据趋势,提高了预测准确性。 【可解释性】深度学习模型的可解释性也在逐步提高,例如,通过积分梯度测量确定影响AKI风险的关键因素,如肌酐和尿量变化。 【未来方向】多任务模型的提出,旨在同时预测AKI的不同阶段,优化了预测效率。随着AI和深度学习技术的不断发展,它们在ICU中预测和管理AKI的潜力将进一步增强,有望改善患者预后,降低医疗成本。
2024-06-25 09:33:51 18KB
1
智谱AI大模型商业化案例合集。 大语言模型ChatGLM官方公开的商业化案例合集。2024年1月,智谱AI推出新一代基座大模型GLM-4,整体性能相比上一代大幅提升。它支持更长上下文,具备更强多模态能力。
2024-06-24 20:01:43 8.74MB 人工智能
1
本博客将介绍一种新的时间序列预测模型——FNet它通过使用傅里叶变换代替自注意力机制,旨在解决传统Transformer模型中的效率问题。FNet模型通过简单的线性变换,包括非参数化的傅里叶变换,来“混合”输入令牌,从而实现了快速且高效的处理方式。这种创新的方法在保持了相对较高的准确性的同时,显著提高了训练速度,特别是在处理长序列数据时更显优势。FNet的工作原理,并通过一个实战案例展示如何实现基于FNet的可视化结果和滚动长期预测。预测类型->多元预测、单元预测、长期预测。适用对象->受硬件所限制的时候,FNet是一种基于Transformer编码器架构的模型,通过替换自注意力子层为简单的线性变换,特别是傅里叶变换,来加速处理过程。FNet架构中的每一层由一个傅里叶混合子层和一个前馈子层组成(下图中的白色框)。傅里叶子层应用2D离散傅里叶变换(DFT)到其输入,一维DFT沿序列维度和隐藏维度。总结:FNet相对于传统的Transformer的改进其实就一点就是将注意力机制替换为傅里叶变换,所以其精度并没有提升(我觉得反而有下降,但是论文内相等,但是从我的实验角度结果分析精度是有下降的
1
课程大纲.全新升级 以下为课程大概框架,实际情况根据大家吸收情况合理调整 先导课底层逻辑详解 小红书变现价值有多强 小红书流量机制深度详解 商家博主变现模式揭秘 揭秘小红书笔记限流秘密 商家博主运营避坑指南 模块一商家运营规划 商家博主精准变现的底层逻辑 商家博主运营玩法全解析 小红书电商运营逻辑详解 经典商家博主走红路径拆解 模块二商家账号包装 商家博主精准变现定位法 深度挖掘对标博主技法 账号七件套:高转化主页设计 账号闪光点打造和调性提高技巧 模块三赚钱笔记创作 如何挖掘赚钱笔记选题 赚钱笔记的5大写作套路 点击率翻倍的标题和首图套路 电商带货笔记初创和二创技法 嘉宾分享:如何用AI提高笔记文案创作效率? 模块四关键词SEO 小红书SEO的底层逻辑 深挖热度超高的行业关键词 独家关键词霸屏玩法(含本地流量) 小红书笔记掉收录的拯救技巧 模块五商家投放秘籍 商家聚光平台营销推广科普 效果广告投放秘籍(含现场实操) 品牌商家与达人博主合作技巧 新生品牌达人投放案例拆解 嘉宾分享:带货笔记首图创作技巧(实操展示) 模
2024-06-21 18:19:37 119B 课程资源 人工智能
1
本数据集可用于进行文本分类、信息检索等自然语言处理实验,共包含80万条短信。其中:原始数据集data.txt每行为1条短信,格式为“标签\t短信内容”,标签=0表示正常短信,标签=1表示垃圾短信。train.csv和test.csv为拆分后的训练集与测试集,拆分代码为train_test_split.py。stopwords.txt为使用的停用词。 基于该数据集的文本分类详见文章https://blog.csdn.net/baidu_40395808/article/details/135793836,基于该数据集的信息检索详见文章https://blog.csdn.net/baidu_40395808/article/details/135897480。 示例如下: 0 商业秘密的秘密性那是维系其商业价值和垄断地位的前提条件之一 1 《依林美容》三.八.女人节倾情大放送活动开始啦!!!!超值套餐等你拿,活动时间x月x日一x月xx日, 详情进店咨询。美丽热线x
2024-06-19 16:21:14 40.89MB 数据集 人工智能 搜索引擎 信息检索
1
人工智能-项目实践-问答系统-Emotional First Aid Dataset, 心理咨询问答、聊天机器人语料库 心理咨询问答语料库(以下也称为“数据集”,“语料库”)是为应用人工智能技术于心理咨询领域制作的语料。据我们所知,这是心理咨询领域首个开放的 QA 语料库,包括 20,000 条心理咨询数据,也是迄今公开的最大的中文心理咨询对话语料(发稿日期 2022-04-07)。数据集内容丰富,不但具备多轮对话内容,也有分类等信息,制作过程耗费大量时间和精力,比如标注过程是面向多轮对话,平均每条标记耗时超过 1 分钟。
计算机设计:智能系统是基于树莓派、Python、HTML5、PHP、打造出的一款物联网人工智能系统。 自美智能系统是基于树莓派、Python、HTML5、PHP、打造出的一款物联网人工智能系统,目前系统已实现:语音唤醒、语音识别、语音合成、人体探测、人脸识别、人脸对比、智能互动、插件式功能扩展等全套人工智能交互功能。 自美系统可方便的扩展为:智能家居集控系统、交互人工智能设备(如魔镜 / 挂历 / 服务机器人)、生产工作流程监控和控制系统等功能,。
2024-06-19 08:49:13 14.46MB
1
2023最新版AI创作系统ChatGPT网站源码/GPT联网/支持ai绘画/支持MJ以图生图/Dall-E2绘画
2024-06-18 18:45:55 9.69MB 人工智能
1