第三版 作者是Henry Stark 和 John. W. Woods UCSD指定教科书
2022-03-16 10:35:32 8.7MB Random Process
1
dec-tree-random-forest-泰坦尼克号 使用决策树和随机森林模型预测泰坦尼克号乘客的存活率。 使用熊猫和 scikit-learn。 数据及比赛详情:
2022-03-16 10:07:41 36KB Python
1
PyTorch随机擦除的实现 用法 $ python main.py --block_type basic --depth 110 --use_random_erase --random_erase_prob 0.5 --random_erase_area_ratio_range '[0.02, 0.4]' --random_erase_min_aspect_ratio 0.3 --random_erase_max_attempt 20 --outdir results CIFAR-10的结果 模型 测试错误(5次运行的中位数) 训练时间 没有随机擦除的ResNet-preact-56 5.85 98分钟 ResNet-preact-56 w /随机擦除 5.22 98分钟 没有随机擦除 $ python -u main.py --depth 56 --block_type b
2022-03-15 17:39:16 512KB computer-vision pytorch cifar10 Python
1
由于社区结构是复杂网络的重要特征,近年来对社区检测的研究越来越受到人们的关注。尽管大多数研究者致力于识别不相交的社区,但许多真实网络中的社区经常重叠。在本文中,我们提出了一种新颖的MCLC算法,该算法利用线形图上的随机游动和吸引力强度来发现重叠社区。 与传统的从节点开始的随机游走不同,我们的随机游走从链接开始。 首先,我们将无向网络图转换为加权线图,然后在该图上随机游走。线图可以与马尔可夫链相关联。 通过计算马尔可夫链的转移概率,我们获得了链对之间的相似性。 接下来,可以通过链接方法将链接聚类为“链接社区”,并且链接社区之间的这些节点可以是重叠节点。 在将“链接社区”转换为“节点社区”时,我们定义了吸引强度以控制重叠大小。 最终,允许将检测到的社区重叠。 在合成网络和一些真实世界的网络上进行的实验验证了该算法的有效性和有效性。将重叠模块Qov与其他相关算法进行比较,该算法的结果令人满意。
2022-03-13 15:19:42 896KB Community detection ;Random walk
1
带有CSE-CIC-IDS-2018的指令检测系统 这是针对CIC-IDS-2018的具有随机森林算法的机器学习分析。 它仅使用“ Thursday-15-02-2018_TrafficForML_CICFlowMeter.csv”文件来分析DDoS攻击。 我将模型应用于通过Django和Django-Channels来利用sFlow的软件定义网络中的DDoS攻击。 在这里了解更多: : 信用:
2022-03-12 18:33:53 12KB data-science machine-learning ddos random-forest
1
Probability, Statistics, and Random Processes for Engineers - Solution Manual , First Edition John A. Gubner
2022-03-10 17:49:53 1.49MB Solution Manual
1
随机游走NFT 此仓库与同时进行 基于以太坊的随机游走NFT 一个智能合约,可以产生可证实的随机游动,从而生成点状图,该点状图看起来像是从原点开始到任意随机点结束的藏宝图。
2022-03-10 14:32:27 62KB Solidity
1
此提交会根据 Shadowed Rician 概率密度函数生成随机数。
2022-03-08 22:41:10 37KB matlab
1
主要介绍了详解Python中打乱列表顺序random.shuffle()的使用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
1
matlab移动平均数代码Random_Field_Generation Matlab代码使用转向带法,矩阵分解,KL展开和移动平均法生成平稳的高斯随机场。
2022-03-03 14:49:01 4KB 系统开源
1