内容概要:本文针对空中集群网络中面临的两大挑战——UAV(无人驾驶飞行器)任务卸载优化和服务质量保障——进行了深入探讨并提出了两种关键机制。(1)基于动态任务负载和无人机(UAV)路径规划优化的计算任务卸载策略,它考虑了UAV位置和运动预测因素来决定何时何地执行计算任务,以便最大限度地减少资源浪费与数据传输延迟;(2)基于不同时间段变化特性设计的大时间尺度和小时间尺度下灵活高效的网络切片资源共享框架,用以维持系统稳定运行及提高整体效能。 适合人群:对于有兴趣研究或者从事无人机动态网络管理和通信优化的技术专家,以及想要进一步探索该前沿课题的学生群体。 使用场景及目标:适用于希望增强无线通信网性能、改善资源利用情况的场景;其主要目的在于降低空中集群系统的通信成本同时提升响应速度和服务水平。 阅读建议:重点在于理解如何应用提出的机制解决实际问题。注意跟随文章脉络,先从理论上把握新方法的设计思路,再看实验部分验证这些想法的有效性和实用性,最好能复现实验以加深理解和掌握关键技术要点。
2025-05-05 21:41:03 153KB 无线通信 计算机网络
1
介绍了形式形式的引力熵的平面宇宙论(FSC)计算的原理。 这些计算表明与COBE DMR测量值紧密相关,后者显示了18微开尔文的CMB RMS温度变化。 0.66×10-5的COBE dT / T各向异性比率落在为重组/解耦历元的开始和结束条件计算的FSC重力熵范围内。 因此,将重力作为熵的新兴属性的FSC模型表明,CMB温度各向异性模式可能只是重力熵的映射,而不是在有限的时间开始时放大的“量子涨落”事件。
1
基于Simulink仿真的永磁同步电机模型预测电流控制技术研究,永磁同步电机模型预测电流控制Simulink仿真设计与实现,永磁同步电机模型预测电流控制Simulink仿真 ,核心关键词:永磁同步电机;模型预测电流控制;Simulink仿真;永磁同步电机模型预测控制;电流控制。,永磁同步电机模型预测电流控制的Simulink仿真研究 永磁同步电机(PMSM)由于其高效能、高可靠性和良好的动态性能,在现代工业和电动汽车领域得到了广泛的应用。随着电力系统的发展和智能化进程的推进,对电机控制技术的要求也越来越高。模型预测电流控制(Model Predictive Current Control,MPCC)技术因其优秀的控制性能,尤其是在处理非线性系统、多变量耦合以及限制约束问题上的优势,已成为研究热点。Simulink作为一个强大的仿真平台,提供了一种有效的方式来模拟电机控制系统,从而在设计阶段预测和验证系统行为。 Simulink仿真模型通常包括电机模型、控制策略和相关的功率电子接口。在永磁同步电机模型预测电流控制的Simulink仿真设计与实现中,首先要建立一个精确的电机数学模型,这包括电机的电感、电阻和反电动势等参数的准确建模。模型预测电流控制策略需要通过定义一个性能指标函数,并结合电机的运行状态和预测模型来计算最优的控制输入。此外,必须考虑电机运行中的各种限制,如电流、电压的限制,以及保护装置的响应时间等。 在仿真过程中,算法的有效性、稳定性和动态响应特性是评估控制策略的关键指标。通过与传统的PI控制等方法的对比,模型预测控制展示了在跟踪精度、抗干扰能力和快速响应等方面的优势。然而,模型预测控制在实时应用中可能会遇到计算量大和延迟问题,因此在设计时需要优化算法,比如使用并行计算和简化预测模型等技术来提高仿真效率。 在实际应用中,对于永磁同步电机模型预测电流控制技术的深入研究将有助于电机控制系统的优化设计,从而提高整个电力系统的性能。这对于推进电力电子技术的智能化和绿色化,以及促进电机驱动系统的可持续发展具有重要意义。 由于电机驱动系统在工业生产和日常生活中扮演着核心角色,因此相关的技术研究不仅具有学术价值,更具有广泛的应用前景。对永磁同步电机模型预测电流控制技术的深入探究,无疑将推动相关领域的技术革新,为提升工业和电动汽车的能效水平和控制精度开辟新的道路。 通过对永磁同步电机模型预测电流控制技术的研究以及基于Simulink的仿真设计与实现,可以为电机控制系统的开发提供有效的理论基础和实践指导。这不仅能够帮助工程师更好地理解和掌握电机及其控制系统的行为,也为未来电机驱动技术的发展奠定了坚实的基础。
2025-05-05 18:15:32 922KB xhtml
1
储能蓄电池与Buck-Boost双向DC-DC变换器Simulink仿真模型研究:放电电压电流双闭环控制与充电单电流环策略,储能蓄电池与Buck-Boost双向DC-DC变换器Simulink仿真模型研究:放电电压电流双闭环控制与充电单电流环策略,储能蓄电池+buckboost双向DC-DC变器Simulink仿真模型 放电电压电流双闭环 充电单电流环 ,储能蓄电池; buckboost; 双向DC-DC变换器; Simulink仿真模型; 放电电压电流双闭环; 充电单电流环。,基于储能蓄电池的Buck-Boost双向DC-DC变换器Simulink仿真模型研究
2025-05-05 14:02:21 696KB 数据仓库
1
PLECS光伏扰动观察法MPPT仿真研究:自定义光伏电池模型参数调整与多种扰动策略实现,PLECS光伏扰动观察法MPPT仿真:自定义光伏电池模型与多种扰动策略,PLECS光伏扰动观察法MPPT仿真,附带自搭光伏电池模型,可更改光照,温度和最大功率点参数。 MPPT控制部分使用C语言编写(模块搭建也有),占空比扰动,电压扰动,电流扰动。 ,PLECS光伏扰动观察法; MPPT仿真; 自搭光伏电池模型; 光照参数调整; 温度参数调整; 最大功率点参数调整; MPPT控制C语言编写; 占空比扰动; 电压扰动; 电流扰动。,PLECS仿真:智能光伏MPPT控制技术,光温调整及最大功率点模块优化
2025-05-04 23:28:28 753KB 开发语言
1
_六自由度机械臂关节模块化技术研究 本文主要研究内容包括以下几个方面: 1 .模块化关节的动力系统设计选取,传动方案的选取; 2 .模块化关节电机、减速器及失电保护装置的选型; 3 .模块化关节机械结构设计及布线设计; 4 .通过模块化关节串联的六自由度机械臂总体布局设计; 5 .六自由度机械臂运动学正向问题分析及逆向问题分析; 6 .建立中空六自由度机械臂的简易动力学模型并进行动力学分析、仿真;
2025-05-03 22:32:40 3.56MB 六自由度
1
《Simulink仿真模型复现:锂离子电池SOC主动均衡控制策略研究与实现》,锂离子电池SOC主动均衡控制仿真模型的硕士论文复现:基于差值、均值和标准差的均衡算法研究与应用,Simulink锂离子电池SOC主动均衡控制仿真模型 硕士lunwen复现 锂离子电池组SOC均衡,多电池组均衡控制,双向反激变器均衡, 硕士lunwen复现,均衡算法基于差值、均值和标准差 有防止过放和过充环节 附参考的硕士lunwen“锂离子电池SOC估算与主动均衡策略研究” 默认2016版本。 ,锂离子电池SOC; 主动均衡控制; 仿真模型; 硕士论文复现; 均衡算法; 差值均衡; 均值均衡; 标准差均衡; 防止过放过充; 2016版本。,基于Simulink的锂离子电池SOC主动均衡控制模型复现:差值、均值与标准差均衡算法研究与应用
2025-05-03 22:19:05 82KB ajax
1
Revo Uninstaller Pro 是一款极为强大好用的原生64位专业级软件彻底卸载工具,拥有先进智能扫描算法,可在卸载软件同时更彻底有效地清除与之相关的垃圾/临时文件和注册表键值;它能强制卸载那些正常卸载出错误的软件,也能通过监视软件安装过程来记录下系统更改之处,从而实现最干净的卸载。如果你希望系统保持干净快速稳定工作,Revo Uninstaller Pro 绝对是应该必备的神器…
2025-05-03 14:35:26 22.47MB
1
基于SLMP算法的MATLAB水下传感器网络定位仿真研究——参考IEEE Transactions文章的可扩展移动预测定位技术,【6】MATLAB仿真 水下传感器网络定位,SLMP算法,有参考文档。 主要参考文档: 1. Scalable Localization with Mobility Prediction for Underwater Sensor Networks,IEEE Transactions on Mobile Computing 主要供文档方法的学习 非全文复现。 ,MATLAB仿真;水下传感器网络定位;SLMP算法;参考文档;可扩展性定位;移动预测。,MATLAB仿真:水下传感器网络定位的SLMP算法研究
2025-05-03 11:04:35 878KB
1
MATLAB simulink 仿真: 基于popov理论和模型参考自适应理论,辨识永磁同步电机参数(SPMSM)simulink 仿真。 可提供算法的相关文献,供研究使用。 MATLAB version: 2019b or below MATLAB Simulink仿真技术是电气工程领域广泛采用的一种仿真工具,它可以用于设计、建模、分析和仿真动态系统的性能。本次介绍的仿真项目专注于永磁同步电机(SPMSM)的参数辨识,这是电机控制领域的一项重要技术,涉及到电机性能的优化和控制系统的设计。 Popov理论和模型参考自适应理论是两种不同的控制理论方法,它们在永磁同步电机参数辨识中扮演着核心角色。Popov理论主要用于保证系统稳定性,特别是在非线性系统的分析中应用广泛。而模型参考自适应理论(MRAS)则是一种在线系统参数辨识和自适应控制策略,通过实时调整系统参数以匹配模型参考,实现对电机参数的准确估计。 仿真过程中,首先需要建立一个永磁同步电机的数学模型,并将其导入到Simulink环境中。接下来,利用Popov理论和模型参考自适应理论来构建辨识算法。在仿真运行时,算法会根据电机在不同工作条件下的响应数据,动态调整电机参数模型,以期达到与实际电机性能的最佳匹配。 仿真结果通常会以图表或文档的形式展示,例如在提供的文件列表中就包含了多个JPG格式的仿真结果图片和文档文件。这些结果文件将展示仿真过程中的关键数据,如电机电流、电压、转速等参数随时间的变化情况,以及辨识算法的收敛性和准确性评估。通过分析这些数据,研究人员可以进一步优化电机模型和辨识算法,提高参数辨识的精度和可靠性。 同时,文件列表中还包含了以.txt和.doc为扩展名的文本文件,这些文件很可能是仿真项目的研究报告、方法说明或理论分析等文档。它们为研究者提供了详细的理论依据和仿真步骤,以及仿真过程中可能遇到的问题和解决方案的探讨。这些文档对于理解仿真模型和辨识算法的深层机制是十分重要的,也便于其他研究者复现实验结果。 本次介绍的仿真项目,是运用MATLAB Simulink工具,结合Popov理论和模型参考自适应理论,在永磁同步电机参数辨识方面的深入研究。它不仅展示了仿真技术在电机控制领域的应用,还通过详细的理论分析和实践操作,为研究者提供了宝贵的资源和数据支持。
2025-05-02 13:54:34 93KB xhtml
1