FakeNews_Detection 假新闻检测器通过使用“ doc2vec”模型学习美国新闻的模式来建立分类器 假新闻检测 概述 社交媒体上的虚假新闻检测主题最近引起了极大的关注。 比较网站与带有标签的假新闻来源列表的基本对策是不灵活的,因此需要一种机器学习方法。 我们的项目旨在基于新闻文章的文本内容,使用自然语言处理技术直接检测虚假新闻。 问题定义 开发机器学习程序,以识别新闻源何时可能产生虚假新闻。 我们的目标是使用带有标签的真实和伪造的新文章语料库来构建分类器,该分类器可以根据语料库中的内容做出有关信息的决策。 该模型将重点根据来自某个来源的多篇文章来识别假新闻来源。 一旦某个来源被标记为虚假新闻的产生者,我们就可以高度肯定地预测该来源未来的任何文章也将是虚假新闻。 专注于来源扩大了我们对文章分类错误的容忍度,因为我们将从每个来源获得多个数据点。 该项目的预期应用是用于在社交媒
2021-12-08 16:43:22 45.98MB JupyterNotebook
1
此代码采用通用scrapy 框架 爬取了中北大学的校园新闻/适合新手入门练习SCRAPY 的使用,希望能够对你的学习有所帮助, 关于组织2019年度正高级经济师申报推荐工作的通知2019-11-11 关于首届“山西省优秀人才突出贡献奖”和 “山西省人才工作贡献奖”推荐结...2019-11-08
2021-12-08 16:21:14 563KB scrapy nuc
1
新闻检测系统 提议的系统分为多个阶段,以根据数据挖掘操​​作领域(例如数据收集,数据预处理,特征提取,特征选择和机器学习模型的实现)完全隔离工作,以进行将新闻分类为是非的预测并预测新闻属于预测标签的概率。 实施了许多机器学习模型,并根据准确性,f1得分,准确性和召回率等指标对机器学习模型的性能进行了比较。 评估模型性能的主要决定指标被选为f1得分,其中考虑了精度和召回率之间的折衷。 在对以下机器学习模型(SVM,逻辑回归,朴素贝叶斯和随机森林)进行了训练和调整之后,实施了投票分类器,将上述所有模型组合在一起,形成了一个集成分类器,该分类器使用所有这些分类器来预测标签和分类概率并使用软投票方法做出最终预测。 建议的系统步骤: 数据收集:为了实施和测试所建议的系统,使用了William Yang Wang []的“说谎者,说谎者裤子着火:用于虚假新闻检测的新基准数据集”。 该存储库中
2021-12-08 15:47:24 31.54MB 系统开源
1
用C#.net做的新闻发布系统 数据库为sql server 2000
2021-12-08 15:44:03 4.35MB asp.net
1
完全自己写的代码 ,是基于MVC的模式,没有用到框架,适合新手学习,我认为只要自己认真的写完这些代码 还是有所收获的。
2021-12-08 15:30:36 699KB java news javaee sqlserver
1
图文信息;欢迎页面,音乐控制(修复版)
2021-12-08 15:04:50 2.78MB 小程序 新闻模板 deom
1
新闻 :newspaper: 使用Python分类WebApp Sourcerer 用法:- 克隆我的存储库。 在工作目录中打开CMD。 运行pip install -r requirements.txt 在任何IDE(Pycharm或VSCode)中打开项目 运行Fake_News_Det.py ,转到http://127.0.0.1:5000/ 如果要通过一些更改来构建模型,则可以检查Fake_News_Detection.ipynb 。 您可以检查网络应用程序是否正常运行。 有时预测可能是错误的。 屏幕截图 笔记 该项目仅用于学习目的,不要认为它可以实时工作,因为模型是在历史和有限的数据上进行训练的。 对于这种系统的实时构建,我们需要更新的数据集,并且需要在特定的时间间隔内构建模型,因为新闻数据可以在几秒钟内更新,因此我们的模型也应该使用该数据进行更新。 随便 :index_pointing_up: 我和星星 :star:
2021-12-08 10:10:50 13.68MB JupyterNotebook
1
HTML网址导航+新闻类网站,可以加GG广告,内有说明 纯HTML 文件,容易让GG 百度 收录,可以添加做自己的广告。赚取广告费。演示地址:http://www.g2g1.ccom
1
模板包含:首页页面,新闻页面,新闻内容页,留言,单页
1
新闻管理系统,实现登录注册与增删改查。
2021-12-08 08:05:45 37.42MB JA
1