Scrapy是一个强大的Python爬虫框架,它为开发者提供了一套高效、灵活的工具,用于爬取网站并提取结构化数据。在这个"点评.zip"压缩包中,包含的是一个使用Scrapy构建的简单爬虫示例,该爬虫设计用于抓取大众点评网站上的商家信息,特别是商家名字和星级。 让我们深入了解一下Scrapy的基础知识。Scrapy由多个组件组成,如Spiders(爬虫)、Items(数据模型)、Item Pipeline(数据处理管道)、Request/Response对象、Selectors(选择器)等。在Scrapy项目中,每个爬虫类定义了如何抓取网页和提取数据。它们通常会发送HTTP请求(Request)到目标网站,并接收响应(Response),然后使用XPath或CSS选择器来解析HTML内容,提取所需的数据。 在这个案例中,描述提到的爬虫可能包括以下关键部分: 1. **Spider类**:至少有一个名为`DianpingSpider`的类,继承自Scrapy的`Spider`基类。它会定义起始URL,用于启动爬虫并定义如何解析响应。 2. **start_requests()**:这是Spider类中的一个方法,用于生成初始的请求(Requests)。在这里,它可能会指向大众点评的商家列表页面。 3. **parse()**:这是默认的回调函数,用于处理爬取到的每个响应(Response)。在这个函数中,开发者会使用XPath或CSS选择器来定位商家名称和星级的信息。 4. **Items**:定义了要爬取的数据结构,可能有一个名为`DianpingItem`的类,包含了`name`(商家名称)和`rating`(星级)字段。 5. **Item Pipeline**:可能包含一个或多个处理数据的阶段,比如清理和验证数据,存储到数据库或文件系统等。 6. **中间件(Middleware)**:Scrapy允许自定义请求和响应的处理逻辑,例如设置User-Agent、处理重定向、处理cookies等,可能在这个示例中也有相应的配置。 在`dianping`这个子目录下,可能会有以下文件结构: - `items.py`:定义了`DianpingItem`类。 - `spiders` 文件夹:包含`dianping_spider.py`,定义了`DianpingSpider`类。 - `settings.py`:Scrapy项目的配置文件,包括中间件、Pipeline和其他设置。 - `pipelines.py`:定义了Item Pipeline。 - `logs` 文件夹:存放日志文件。 - `middlewares.py`(可选):如果自定义了中间件,可能会在这个文件中。 - `models.py`(可选):如果数据存储到数据库,可能包含数据库模型定义。 学习这个Scrapy demo可以帮助你理解如何从网页中提取数据,同时熟悉Scrapy框架的使用。你可以通过阅读代码,了解如何构造请求、解析响应,以及如何处理和存储抓取到的数据。这对于进一步开发更复杂的爬虫项目是很有帮助的。此外,了解Python基础和网络请求原理也是必不可少的,因为Scrapy是基于Python编写的,而爬虫工作则涉及到HTTP协议。
2025-04-08 15:00:05 24.99MB python3.7 scrapy 大众点评
1
【项目资源】: 包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。 包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。
2024-11-07 09:24:07 9.05MB 毕业设计 课程设计 项目开发 资源资料
1
Scrapy是一个强大的Python爬虫框架,它提供了许多高级功能,包括自动处理HTTP请求、解析HTML文档、管理网络延迟以及——如题目所示——图片抓取。本文将深入探讨Python Scrapy如何实现图片爬取,并通过一个具体的代码实例来展示其工作原理。 我们需要创建一个Scrapy Spider。在Scrapy项目中,Spider是负责抓取网页内容的核心组件。以下是一个名为`ImgSpider`的简单示例: ```python class ImgSpider(scrapy.Spider): name = 'img' start_urls = ['http://www.521609.com/daxuemeinv/'] url = 'http://www.521609.com/daxuemeinv/list8%d.html' pageNum = 1 def parse(self, response): li_list = response.xpath('//[@id="content"]/div[2]/div[2]/ul/li') for li in li_list: img_src = 'http://www.521609.com' + li.xpath('./a[1]/img/@src').extract_first() item = ImgproItem() item['src'] = img_src yield item ``` 在这个Spider中,`parse`方法解析了响应(`response`),提取了每个图片的URL,并将其放入一个`Item`对象中。`Item`是Scrapy中的一个类,用于封装爬取的数据。在这个例子中,我们创建了一个`ImgproItem`,其中包含一个字段`src`,用于存储图片URL。 接着,我们需要配置Scrapy以处理图片。在Scrapy的设置文件(通常是`settings.py`)中,增加`IMAGES_STORE = './imgsLib'`,这告诉Scrapy图片应该保存在当前目录下的`imgsLib`文件夹里。 我们需要创建一个自定义的图片处理管道(Pipeline)。Scrapy的Pipeline机制允许我们在数据从Spider到最终存储或导出的过程中进行预处理。对于图片下载,我们需要继承Scrapy的`ImagesPipeline`类,并重写其中的几个关键方法: ```python from scrapy.pipelines.images import ImagesPipeline class ImgproPipeline(ImagesPipeline): def get_media_requests(self, item, info): yield scrapy.Request(item['src']) def file_path(self, request, response=None, info=None): name = request.url.split('/')[-1] print('正在下载:', name) return name def item_completed(self, results, item, info): return item ``` `get_media_requests`方法负责生成下载图片的请求;`file_path`定义了图片文件在本地存储时的文件名;`item_completed`方法在图片下载完成后被调用,这里我们只是简单地返回`item`,意味着这个`item`的处理已完成,可以交给下一个Pipeline处理。 总结来说,Python Scrapy的图片爬取原理主要涉及以下几个步骤: 1. Spider解析网页并提取图片URL。 2. 将图片URL放入Item对象并提交给Pipeline。 3. 配置Scrapy的图片存储位置。 4. 自定义Pipeline继承`ImagesPipeline`,重写相关方法处理图片下载。 5. 图片下载完成后,保存至指定路径,并更新Item状态。 这个过程使得Scrapy能够高效地抓取和存储网页中的图片,为数据分析、网站备份或其他需要大量图片的应用提供了便利。通过灵活配置和扩展,Scrapy的图片爬取功能可以适应各种复杂的网页结构和需求。
2024-11-06 13:54:52 40KB Python Scrapy 图片爬取
1
爬虫(Web Crawler)是一种自动化程序,用于从互联网上收集信息。其主要功能是访问网页、提取数据并存储,以便后续分析或展示。爬虫通常由搜索引擎、数据挖掘工具、监测系统等应用于网络数据抓取的场景。 爬虫的工作流程包括以下几个关键步骤: URL收集: 爬虫从一个或多个初始URL开始,递归或迭代地发现新的URL,构建一个URL队列。这些URL可以通过链接分析、站点地图、搜索引擎等方式获取。 请求网页: 爬虫使用HTTP或其他协议向目标URL发起请求,获取网页的HTML内容。这通常通过HTTP请求库实现,如Python中的Requests库。 解析内容: 爬虫对获取的HTML进行解析,提取有用的信息。常用的解析工具有正则表达式、XPath、Beautiful Soup等。这些工具帮助爬虫定位和提取目标数据,如文本、图片、链接等。 数据存储: 爬虫将提取的数据存储到数据库、文件或其他存储介质中,以备后续分析或展示。常用的存储形式包括关系型数据库、NoSQL数据库、JSON文件等。 遵守规则: 为避免对网站造成过大负担或触发反爬虫机制,爬虫需要遵守网站的robots.txt协议,限制访问频率和深度,并模拟人类访问行为,如设置User-Agent。 反爬虫应对: 由于爬虫的存在,一些网站采取了反爬虫措施,如验证码、IP封锁等。爬虫工程师需要设计相应的策略来应对这些挑战。 爬虫在各个领域都有广泛的应用,包括搜索引擎索引、数据挖掘、价格监测、新闻聚合等。然而,使用爬虫需要遵守法律和伦理规范,尊重网站的使用政策,并确保对被访问网站的服务器负责。
2024-05-17 16:46:49 550KB 爬虫 python 数据收集
1
scrapy + DrissionPage 爬取数据
2024-03-26 22:46:42 11KB scrapy python 爬虫
1
微博爬虫,一个基于Scrapy框架的轻量微博爬虫,Sina Weibo Spider.zip
2024-03-03 02:49:49 647KB 爬虫 scrapy
1
scrapy+splash官方文档
2024-01-12 23:37:29 1.33MB scrapy
1
此文件包含安装scrapy所依赖的所有包,以及详细的安装过程。我已经被网上blog里面安装scrapy搞疯了,各种说的模糊。
2023-11-20 06:03:15 19.16MB scrapy openssl pyopenssl 爬虫框架安装
1
python_3.7安装scrapy 运行pip install Scrapy报错Microsoft Visual C++ 14.0 is required上传错了
2023-11-08 06:04:39 132KB scrapy
1
Python 3.8.2 scrapy 框架 安装依赖包,pip install 经常失败的几个依赖。
2023-10-18 06:02:44 13.17MB python scrapy
1