python读取excel数据 在Python中,可以使用pandas库来读取Excel文件中的数据。下面是一个简单的例子:见附件 在上面的代码中,我们首先导入了pandas库,并使用pd.read_excel()函数来读取名为example.xlsx的Excel文件。读取的数据将被存储在一个名为df的DataFrame对象中。然后,我们使用df.head()函数来显示前5行数据。 如果需要读取特定的工作表或单元格数据,可以在read_excel()函数中使用参数进行指定。例如:见附件 在上面的代码中,我们使用sheet_name参数来指定要读取的工作表的名称。如果要读取多个工作表,可以将它们作为列表传递给sheet_name参数。此外,我们还使用header=None和index_col参数来指定要读取的单元格范围和索引列。 除了读取Excel文件的内容,我们还可以进行更多的操作,例如修改单元格的值、添加新的单元格或工作表、删除单元格或工作表等。下面是一些示例代码:见附件
2024-04-29 22:47:54 279KB python
1
stm32f103通过485协议读取7合一传感器数据(温度、湿度、氮、磷、钾、ph、电导率)
2024-04-29 21:04:14 10.27MB stm32
1
在进行image captioning实验时,通常会使用COCO、Flickr8k和Flickr30k等数据集。这些数据集已经处理好了格式,因此我们可以直接使用它们。然而,当我们需要使用自定义的数据集来完成特定任务时,就需要将其转换为json格式的数据集。目前,关于这方面的代码资料相对较少。因此,本文作者花费了一些时间,从头编写了一个能够将自定义的image captioning数据集转换为COCO JSON格式的代码。
2024-04-29 20:51:16 402KB 数据集 json
1
使用matlab建立bp神经网络回归预测,带完整代码、数据、测试结果、详细说明,读者可自行修改,后续会进行多种回归预测对比以及建立复杂神经网络
2024-04-29 19:46:43 195KB 神经网络 matlab
1
基于stm32-f407芯片中DMA外设搬运数据,配合串口传输
2024-04-29 16:56:47 1KB STM32 DMA
1
Matlab实现基于MIC-BP-Adaboost最大互信息系数数据特征选择算法结合Adaboost-BP神经网络的数据分类预测 Matlab实现基于MIC-BP-Adaboost最大互信息系数数据特征选择算法结合Adaboost-BP神经网络的数据分类预测(Matlab完整程序和数据) 1.最大互信息系数MIC(数据特征选择算法)的分类预测,MIC特征选择分类预测,多输入单输出模型。 2.多特征输入模型,直接替换数据就可以用。 3.语言为matlab。分类效果图,混淆矩阵图。 4.分类效果图,混淆矩阵图。 5.MIC-BP-Adaboost最大互信息系数数据特征选择算法结合Adaboost-BP神经网络的数据分类预测。 运行环境matlab2018及以上。 经过特征选择后,保留9个特征的序号为: 1 3 5 7 8 9 10 11 12
2024-04-29 15:57:15 1KB matlab 神经网络
1
用于各种稀疏表示文章的AR数据集 目前csdn的资源里大多都是AR数据集的灰度图 这里是AR数据集的彩色图像 可用于人脸识别、光照处理等 论文“PCA versus LDA" EEE Transactions on Pattern Analysis and Machine Intelligence”裁剪后得到的结果 包含裁剪区域txt和裁剪后得到的图像bmp
2024-04-29 12:25:54 115.3MB ar database 稀疏表示 人脸识别
1
#用户消费行为预测比赛代码 第二届中国大数据技术创新大赛 电商赛题-用户消费行为预测 包含比赛用到的所有代码。
2024-04-29 11:54:45 20KB Python
1
小区数据,小区名、省份、城市、区域、地址、纬度、经度、纬度(GPS)、经度(GPS)、 物业类型、物业费、总建面积、总户数、建造年代、停车位、容积率、绿化率、开发商、物业公司 等
2024-04-29 10:32:24 62.09MB
1
基于大数据反电信诈骗管理系统是一个高级的Python项目,旨在通过分析海量通信数据来识别和预防电信诈骗活动。该系统结合了大数据分析、自然语言处理(NLP)、机器学习等技术,以提高检测诈骗电话和短信的准确性。 主要功能可能包括: 1. **实时监控与分析**:系统能够实时收集并分析通话记录和短信内容,使用预定义的规则和模式识别潜在的诈骗行为。 2. **智能报告系统**:生成关于可疑通信行为的报告,包括时间、频率、通信双方等信息,供进一步分析和调查。 3. **用户反馈机制**:允许用户标记和报告诈骗电话或短信,系统据此更新诈骗数据库和检测规则。 4. **风险评估模型**:构建风险评估模型,根据历史数据和行为模式预测单个电话号码或短信的诈骗概率。 5. **教育和预防措施**:提供教育用户的模块,普及如何识别和防范电信诈骗的知识。 6. **接口友好的管理平台**:提供一个易于使用的Web界面,让管理人员可以轻松地查看分析结果、管理报告和调整系统设置。 技术栈通常涉及: - Python编程语言:作为主要的后端逻辑和数据处理工具。 - 数据库技术:如MySQL、PostgreSQL或MongoDB,用于存储通信日志和诈骗数据库。 - 前端技术:HTML, CSS, JavaScript以及框架(如React或Vue.js),用于构建用户界面。 - 机器学习库:如scikit-learn或TensorFlow,用于构建和训练诈骗检测模型。 - NLP工具:如NLTK或Spacy,用于分析短信内容和识别诈骗语言模式。 部署方式可能包括: - 本地部署:在内部网络中配置环境运行系统,确保数据安全性。 - 云服务部署:利用云服务提供商的可扩展性和高可用性优势进行托管。 该系统对于提高公众对电信诈骗的防范意识、减少诈骗成功率具有重要作用。同时,它为电信运营商、安全机构和金融机构提供了一个强有力的工具来保护其客户不受诈骗活动的侵害。通过大数据分析和机器学习,系统能够不断学习和适应新的诈骗手段,从而持续提升防护能力。
2024-04-28 21:11:15 46.24MB 课程设计 项目源码 python