真实新闻 使用Python检测虚假新闻
2021-12-03 01:43:51 11.25MB JupyterNotebook
1
Heart_Attack-EDA-预测 欢迎来到有关心脏病发作分析和预测的项目。 客观的: 问题简介 探索性数据分析(EDA)和预处理 建筑模型 描述 执行EDA并预测一个人是否容易心脏病发作。 心脏病是大多数种族和民族的主要死亡原因。 仅在美国,就有人每37秒死于心血管疾病。 从视觉和统计角度对心脏病UCI数据集进行完整分析,以获得可用于推理的重要观察结果。 根据身体的各种生物学和物理参数预测一个人是否患有心脏病使模型具有较高的准确性和精度,并可以更有把握地预测结果。 随时随地使用户和患者可以访问这些预测,以便他们可以完整了解其健康状况\ 依存关系 Python kaggle-心脏病发作分析和预测数据集pandas sklearn 数据集 用于训练和测试的数据是从Kaggle下载的“心脏病UCI”。 该数据库包含14个属性。 探索性数据分析 这是一组干净,易于理解的数据。 但是,某些
2021-12-02 22:57:21 1.64MB JupyterNotebook
1
知识蒸馏TPU 使用ResNet和简单的ConvNet进行的卫星图像分类器知识蒸馏。 这些模型在TPU上进行了训练。
2021-12-02 21:14:53 1.83MB JupyterNotebook
1
SCADA-GAN合成代 使用通用对抗网络综合生成SCADA数据集。 从简单的GAN网络开始,发展到WGAN和具有不同结果的CGAN。 二手的Keras和2功能:发电机频率和发电机电压相位更简单 观察结果:具有2个特征,所获得的综合数据集与真实特征非常相似。 哦耶!! 但是...当使用大量特征时,会观察到渐变消失(如Ian GoodFellow的论文)。 使用Wassertein GAN( )实现进行了进一步测试,以解决这种情况,并生成更多功能和CGAN以取得更好的结果。 样本合成生成的SCADA消息 Synthetic Data set output (Created by GAN): Generator Prod Freq Avg Generator Prod Volt Phase Avg 0 50.312412 405.223846 1 50.780399
2021-12-02 14:47:04 60KB JupyterNotebook
1
DeepF(深时尚) 背景 基于“深层时尚数据集”的时尚分析。 以下术语适用 “类别”:衣服分为“上身”,“下身”和“全身”衣服 “类别”:在类别中,服装的不同类别(例如,“ T恤”,“衬衫”等) 设定环境 该项目假定您已经设置了环境。 该项目基于以下主要依赖关系(这是在执行时。新版本也可以使用): classDetect , classDetectKinli :python = 3.6.7 tensorflow-gpu = 1.11.0 keras = 2.2.4 keras-frcnn :python = 3.6.8 tensorflow-gpu = 1.8.0 keras = 2.2.0 (注意:较旧版本的keras / tensorflow是必需的,因为较新版本中存在一个错误,会在模型训练期间导致致命错误) 提示:在具有Xeon 6核3.5 GHz,12 GB RAM,NV
2021-12-02 11:04:40 22.9MB JupyterNotebook
1
SRC:基于稀疏表示的分类
2021-12-02 10:56:12 185KB JupyterNotebook
1
Facebook评论量预测 问题陈述-预测评论量的流量,或者只是预测发布后下一个H小时内预期收到一条Facebook帖子的评论数。 数据摘要-数据集 方式-1。 结论- 挑战-1。 未来工作范围-1。
2021-12-02 07:00:55 1.21MB JupyterNotebook
1
python-api-challenge 天气预报 概述, WeatherPy:运行代码,数据,分析报告,信息图 VacationPy 概述, VacationPy:运行代码,地图 使用的技术 天气预报 概述 WeatherPy在此示例中,您将创建一个Python脚本以可视化世界上距赤道不同距离的500多个城市的天气。 为此,您将利用一个简单的Python库,OpenWeatherMap API和一些常识来创建世界各地城市的代表性天气模型。 您的第一个要求是创建一系列散点图,以展示以下关系: 温度(F)与纬度 湿度(%)与纬度 多云(%)与纬度 风速(mph)与纬度 在每个情节之后添加一个句子或也解释什么是代码并进行分析。 您的第二个要求是对每个关系进行线性回归,仅这次将它们分为北半球(大于等于0度纬度)和南半球(小于0度纬度): 北半球-温度(F)与纬度 南半球-温度(F)与纬度
2021-12-01 22:42:38 4.63MB python api jupyter-gmaps JupyterNotebook
1
CIFAR-10 使用VGG-16,Resnet和Inception net,模型对CIFAR-10数据集的图像进行分类,以对不同的对象(例如汽车,狗等)进行分类。
2021-12-01 20:55:14 111KB JupyterNotebook
1