GSDMM:短文本聚类 该项目为的Dirichlet混合模型实现了Gibbs采样算法,用于短文本文档的聚类。 该算法的一些优点: 它只需要集群数的上限K 通过良好的参数选择,模型可以快速收敛 空间高效且可扩展 该项目是GSDMM的易于阅读的参考实现,除非有需求,否则我不打算维护它。 不过,我积极维护更快锈版本GSDMM的。 电影组过程 在他们的论文中,作者介绍了一个简单的概念模型来解释GSDMM,称为电影组过程。 想象一下一位教授正在领导一个电影课。 在课程开始时,将学生随机分配到K表。 在上课之前,学生会列出自己喜欢的电影。 教授反复朗读班级角色。 每次调用学生姓名时,学生必须选择一个
2021-12-11 20:25:49 8KB python nlp clustering short-text
1
实现K均值聚类,并将结果进行可视化。灰色“+”代表均值中心;黑色“。”代表簇内部的数据点;彩色“。”代表簇边界的数据点,不同的颜色代表不同的簇(由于颜色有限,簇过多时存在颜色重复)
2021-12-11 12:20:31 6KB 机器学习 K均值聚类 Python
1
提出一种半监督聚类算法,该算法在用seeds集初始化聚类中心前,利用半监督分类方法Tri-training的迭代训练过程对无标记数据进行标记,并加入seeds集以扩大规模;同时,在Tri-training训练过程中结合基于最近邻规则的Depuration数据剪辑技术对seeds集扩大过程中产生的误标记噪声数据进行修正、净化,以提高seeds集质量.实验结果表明,所提出的基于Tri-training和数据剪辑的DE-Tri-training半监督聚类新算法能够有效改善seeds集对聚类中心的初始化效果,提高聚类性能.
1
基于模拟退火的聚类算法及实现方法 文档超详细介绍 文档有流程图和MATLAB编写的实现代码
2021-12-10 20:18:46 476KB 模拟退火 聚类算法
1
redDreamDigging 对红楼梦文本进行挖掘,实现字,章的统计,实现章节聚类
2021-12-09 23:40:56 946KB Python
1
当数据的种类很多事,如何进行快速聚类处理?本文介绍了一种快速算法
2021-12-09 21:46:34 109KB 聚类算法
1
meanshift_matlab MATLAB / Octave的均值漂移聚类实现的开源实现。 这是在MATLAB File Exchange中显示的meanshift实现的改进版本。 增加了对任意内核的支持。 版权所有2015 Han Gong ,东英吉利大学 版权所有2006 Bryan Feldman 参考: 福永,庆之助和拉里·D·霍斯特特勒。 “密度函数梯度的估计及其在模式识别中的应用。” 信息论,IEEE Transactions on 21.1(1975):32-40。 MATLAB /八度代码:演示请参见demo.m。 结果:
2021-12-09 21:29:36 7KB MATLAB
1
基于matlab点云工具箱对点云进行处理二:对点云进行欧式聚类,获得聚类后点云簇的外接矩形.rar
2021-12-09 21:01:47 293.1MB matlab 点云
1
基于matlab点云工具箱对点云进行处理三:对点云进行欧式聚类,使用三角剖分处理后获取点云簇的外接凸多边形.rar
2021-12-09 21:01:47 293.1MB matlab 点云
1
基于matlab点云工具箱对点云进行处理四:对点云进行欧式聚类,并获得包围点云簇的外接凹多边形.rar
2021-12-09 21:01:46 293.1MB matlab 点云
1