提出了一种基于多特征提取和支持向量机(support vector machines,SVM)参数优化的车型识别方法,此方法解决了采用单一特征容易受到光照、天气、阴影等环境影响的问题,并且可以对运动中的车辆进行车型识别。首先,采集车辆样本并进行图像预处理,提取车辆的几何特征、纹理特征和方向梯度直方图(histogram of oriented gradient,HOG)特征;其次,将提取的多种特征量进行组合测试,并与单个特征量的测试结果进行比较;最后,采用粒子群算法优化SVM的参数并使用优化的SVM参数进行运动车辆的车型识别。实验结果表明:提出的多特征提取和SVM参数优化相结合的车型识别方法能够取得很好的识别效果,识别率达到90%以上。
1
由于软件版本等原因,网络上好心人分享的《MATLAB神经网络30个案例分析》的第29章“支持向量机的回归拟合——混凝土抗压强度预测”的代码,在MATLAB2016上运行后有问题,现将修改、亲自运行验证后的代码分享,让有相似研究经历的小伙伴不再走弯路,共勉!
1
基于Django构建在线文本分类预测系统代码、模型、数据集:SVM模型在线预测与部署 基于 Django 3.2 框架,参考博客:https://blog.csdn.net/wangyaninglm/article/details/116334297
2021-12-06 11:02:11 327.82MB svm 在线预测 文本分类
提出一种基于集成深度学习模型的情感状态检测方法.首先从脑电信号的时域、频域和时频域中提取4种表征情绪状态显著信息的初始特征;然后使用胶质细胞链改进的深度信念网络分别提取这些特征的高层抽象表示;最后利用判别式受限玻尔兹曼机对高层抽象特征进行融合,进行情感状态预测.在DEAP数据集上进行的实验显示,胶质链能够挖掘和利用EEG不同通道之间的相关性信息,而集成深度学习模型能够有效集成EEG信号在时域、频域和时频域蕴含的情感状态相关的显著性信息.
1
SVM与神经网络(NN)的对比 SVM的理论基础比NN更坚实,更像一门严谨的“科学”(三要素:问题的表示、问题的解决、证明) SVM —— 严格的数学推理 NN —— 强烈依赖于工程技巧 推广能力取决于“经验风险值”和“置信范围值”,NN不能控制两者中的任何一个。 NN设计者用高超的工程技巧弥补了数学上的缺陷——设计特殊的结构,利用启发式算法,有时能得到出人意料的好结果。
2021-12-05 22:12:58 1.83MB 浙江大学 支持向量机 经典课件
1
SVM的一个实例,对不同葡萄酒分类,有原始数据-Matlab code for SVM, classifing types of wine, with original data.
2021-12-05 12:28:17 23KB wine.mat wine_SVM
1
pso-SVM_PSO优化参数_psosvm_SVM优化matlab_svm优化_SVM_源码.zip
2021-12-05 11:54:40 3KB
基于MATLAB下的支持向量机(SVM)GUI页面,可以实现分类和回归功能,并且里面有自己的详细说明,简单方面容易上手,并且还有相应的“libsvm-mat-2.89-3加强工具箱”和“libsvm-3.1-[FarutoUltimate3.1Mcode]”两种版本,可以实现SVM三种寻优方法 grid search、GA、PSO,童叟无欺。
2021-12-04 21:20:52 2.36MB PSO-SVM libsvm-3.1 libsvm-mat-2.89 Grid-SVM
1
该论文系列是我花钱购买的,里面详细讲述了基于SVM的web文本分类的关键技术,解决的问题和创新点,可以为广大学习文本分类的朋友提供很好的参考资料,也能为SVM的初学者建立一个宏观的框架概念,也能为做毕设或研究的提供很大的帮助。
2021-12-04 17:16:25 3.39MB SVM 文本分类 论文 Web
1
支持向量机(support vector machines, SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性分类器。SVM的的学习策略就是间隔最大化,可形式化为一个求解凸二次规划的问题,也等价于正则化的合页损失函数的最小化问题。SVM的的学习算法就是求解凸二次规划的最优化算法。
2021-12-04 15:52:32 12.02MB svm matlab
1