python Deep Learning on身份件识别deepLearning_OCR-master.zip 系统共分为两部分:移动(Android)端和服务器端。移动端共分为两个模块:输入模块和输出模块;服务器端共分为三个模块:模型加载模块、模型处理模块和结果映射模块。
2022-04-29 09:11:44 104.71MB python 深度学习 源码软件 开发语言
一个Python软件包,用于使用 Tensor功能在CPU或GPU上模拟尖峰神经网络(SNN)。 BindsNET是一个尖刺的神经网络仿真库,旨在开发用于机器学习的受生物启发的算法。 该软件包被用作正在进行的研究的一部分,该研究在中将SNN应用于机器学习(ML)和强化学习(RL)问题。 查看,以获取实验集合,结果分析功能,实验结果图等。 该软件包的文档可以在找到。 要求 Python 3.6 requirements.txt 设置东西 使用点子 BindsNET可通过其git存储库获得。 问题 pip install git+https://github.com/BindsNET/bi
1
本书主要介绍统计学的基本思想、原理和方法, 使读者对统计学及统计学的思维方式有一个整体的了解. 本书主要内容包括: 统计学的发展和应用领域、概率理论、数据收集的概念和方法、对数据总体信息的描述、常用的参数估计和假设检验方法. 书中注重以概率理论解释常见统计方法的原理, 并通过计算机模拟帮助读者理解统计思想和原理, 以避免把统计 学片面地理解为简单的加减乘除计算公式, 进而增强学生运用统计思想和方法提出问题、分析问题和解决问题的能力. 本书适合作为高等院校本科生学习统计学知识的入门教材.
2022-04-28 20:56:38 14.19MB R语言
1
Machine-Learning-with-Python:使用机器学习预测澳大利亚的降雨量
2022-04-28 18:10:24 1.1MB JupyterNotebook
1
数据分析,大数据应用,非常好
2022-04-28 16:42:48 4.99MB 数据分析
1
模式识别经典教材 1 Introduction 1 1.1 Example: Polynomial Curve Fitting . . . . . . . . . . . . . . . . . 4 1.2 Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2.1 Probability densities . . . . . . . . . . . . . . . . . . . . . 17 1.2.2 Expectations and covariances . . . . . . . . . . . . . . . . 19 1.2.3 Bayesian probabilities . . . . . . . . . . . . . . . . . . . . 21 1.2.4 The Gaussian distribution . . . . . . . . . . . . . . . . . . 24 1.2.5 Curve fitting re-visited . . . . . . . . . . . . . . . . . . . . 28 1.2.6 Bayesian curve fitting . . . . . . . . . . . . . . . . . . . . 30 1.3 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.4 The Curse of Dimensionality . . . . . . . . . . . . . . . . . . . . . 33 1.5 Decision Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 1.5.1 Minimizing the misclassification rate . . . . . . . . . . . . 39 1.5.2 Minimizing the expected loss . . . . . . . . . . . . . . . . 41 1.5.3 The reject option . . . . . . . . . . . . . . . . . . . . . . . 42 1.5.4 Inference and decision . . . . . . . . . . . . . . . . . . . . 42 1.5.5 Loss functions for regression . . . . . . . . . . . . . . . . . 46 1.6 Information Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 48 1.6.1 Relative entropy and mutual information . . . . . . . . . . 55 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2 Probability Distributions 67 2.1 Binary Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 2.1.1 The beta distribution . . . . . . . . . . . . . . . . . . . . . 71 2.2 Multinomial Variables . . . . . . . . . . . . . . . . . . . . . . . . 74 2.2.1 The Dirichlet distribution . . . . . . . . . . . . . . . . . . . 76 2.3 The Gaussian Distribution . . . . . . . . . . . . . . . . . . . . . . 78 2.3.1 Conditional Gaussian distributions . . . . . . . . . . . . . . 85 2.3.2 Marginal Gaussian distributions . . . . . . . . . . . . . . . 88 2.3.3 Bayes’ theorem for Gaussian variables . . . . . . . . . . . . 90 2.3.4 Maximum likelihood for the Gaussian . . . . . . . . . . . . 93 2.3.5 Sequential estimation . . . . . . . . . . . . . . . . . . . . . 94 2.3.6 Bayesian inference for the Gaussian . . . . . . . . . . . . . 97 2.3.7 Student’s t-distribution . . . . . . . . . . . . . . . . . . . . 102 2.3.8 Periodic variables . . . . . . . . . . . . . . . . . . . . . . . 105 2.3.9 Mixtures of Gaussians . . . . . . . . . . . . . . . . . . . . 110 2.4 The Exponential Family . . . . . . . . . . . . . . . . . . . . . . . 113 2.4.1 Maximum likelihood and sufficient statistics . . . . . . . . 116 2.4.2 Conjugate priors . . . . . . . . . . . . . . . . . . . . . . . 117 2.4.3 Noninformative priors . . . . . . . . . . . . . . . . . . . . 117 2.5 Nonparametric Methods . . . . . . . . . . . . . . . . . . . . . . . 120 2.5.1 Kernel density estimators . . . . . . . . . . . . . . . . . . . 122 2.5.2 Nearest-neighbour methods . . . . . . . . . . . . . . . . . 124 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 3 Linear Models for Regression 137 3.1 Linear Basis Function Models . . . . . . . . . . . . . . . . . . . . 138 3.1.1 Maximum likelihood and least squares . . . . . . . . . . . . 140 3.1.2 Geometry of least squares . . . . . . . . . . . . . . . . . . 143 3.1.3 Sequential learning . . . . . . . . . . . . . . . . . . . . . . 143 3.1.4 Regularized least squares . . . . . . . . . . . . . . . . . . . 144 3.1.5 Multiple outputs . . . . . . . . . . . . . . . . . . . . . . . 146 3.2 The Bias-Variance Decomposition . . . . . . . . . . . . . . . . . . 147 3.3 Bayesian Linear Regression . . . . . . . . . . . . . . . . . . . . . 152 3.3.1 Parameter distribution . . . . . . . . . . . . . . . . . . . . 153 3.3.2 Predictive distribution . . . . . . . . . . . . . . . . . . . . 156 3.3.3 Equivalent kernel . . . . . . . . . . . . . . . . . . . . . . . 157 3.4 Bayesian Model Comparison . . . . . . . . . . . . . . . . . . . . . 161 3.5 The Evidence Approximation . . . . . . . . . . . . . . . . . . . . 165 3.5.1 Evaluation of the evidence function . . . . . . . . . . . . . 166 3.5.2 Maximizing the evidence function . . . . . . . . . . . . . . 168 3.5.3 Effective number of parameters . . . . . . . . . . . . . . . 170 3.6 Limitations of Fixed Basis Functions . . . . . . . . . . . . . . . . 172 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 4 Linear Models for Classification 179 4.1 Discriminant Functions . . . . . . . . . . . . . . . . . . . . . . . . 181 4.1.1 Two classes . . . . . . . . . . . . . . . . . . . . . . . . . . 181 4.1.2 Multiple classes . . . . . . . . . . . . . . . . . . . . . . . . 182 4.1.3 Least squares for classification . . . . . . . . . . . . . . . . 184 4.1.4 Fisher’s linear discriminant . . . . . . . . . . . . . . . . . . 186 4.1.5 Relation to least squares . . . . . . . . . . . . . . . . . . . 189 4.1.6 Fisher’s discriminant for multiple classes . . . . . . . . . . 191 4.1.7 The perceptron algorithm . . . . . . . . . . . . . . . . . . . 192 4.2 Probabilistic Generative Models . . . . . . . . . . . . . . . . . . . 196 4.2.1 Continuous inputs . . . . . . . . . . . . . . . . . . . . . . 198 4.2.2 Maximum likelihood solution . . . . . . . . . . . . . . . . 200 4.2.3 Discrete features . . . . . . . . . . . . . . . . . . . . . . . 202 4.2.4 Exponential family . . . . . . . . . . . . . . . . . . . . . . 202 4.3 Probabilistic Discriminative Models . . . . . . . . . . . . . . . . . 203 4.3.1 Fixed basis functions . . . . . . . . . . . . . . . . . . . . . 204 4.3.2 Logistic regression . . . . . . . . . . . . . . . . . . . . . . 205 4.3.3 Iterative reweighted least squares . . . . . . . . . . . . . . 207 4.3.4 Multiclass logistic regression . . . . . . . . . . . . . . . . . 209 4.3.5 Probit regression . . . . . . . . . . . . . . . . . . . . . . . 210 4.3.6 Canonical link functions . . . . . . . . . . . . . . . . . . . 212 4.4 The Laplace Approximation . . . . . . . . . . . . . . . . . . . . . 213 4.4.1 Model comparison and BIC . . . . . . . . . . . . . . . . . 216 4.5 Bayesian Logistic Regression . . . . . . . . . . . . . . . . . . . . 217 4.5.1 Laplace approximation . . . . . . . . . . . . . . . . . . . . 217 4.5.2 Predictive distribution . . . . . . . . . . . . . . . . . . . . 218 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 5 Neural Networks 225 5.1 Feed-forward Network Functions . . . . . . . . . . . . . . . . . . 227 5.1.1 Weight-space symmetries . . . . . . . . . . . . . . . . . . 231 5.2 Network Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 5.2.1 Parameter optimization . . . . . . . . . . . . . . . . . . . . 236 5.2.2 Local quadratic approximation . . . . . . . . . . . . . . . . 237 5.2.3 Use of gradient information . . . . . . . . . . . . . . . . . 239 5.2.4 Gradient descent optimization . . . . . . . . . . . . . . . . 240 5.3 Error Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . 241 5.3.1 Evaluation of error-function derivatives . . . . . . . . . . . 242 5.3.2 A simple example . . . . . . . . . . . . . . . . . . . . . . 245 5.3.3 Efficiency of backpropagation . . . . . . . . . . . . . . . . 246 5.3.4 The Jacobian matrix . . . . . . . . . . . . . . . . . . . . . 247 5.4 The Hessian Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 249 5.4.1 Diagonal approximation . . . . . . . . . . . . . . . . . . . 250 5.4.2 Outer product approximation . . . . . . . . . . . . . . . . . 251 5.4.3 Inverse Hessian . . . . . . . . . . . . . . . . . . . . . . . . 252 5.4.4 Finite differences . . . . . . . . . . . . . . . . . . . . . . . 252 5.4.5 Exact evaluation of the Hessian . . . . . . . . . . . . . . . 253 5.4.6 Fast multiplication by the Hessian . . . . . . . . . . . . . . 254 5.5 Regularization in Neural Networks . . . . . . . . . . . . . . . . . 256 5.5.1 Consistent Gaussian priors . . . . . . . . . . . . . . . . . . 257 5.5.2 Early stopping . . . . . . . . . . . . . . . . . . . . . . . . 259 5.5.3 Invariances . . . . . . . . . . . . . . . . . . . . . . . . . . 261 5.5.4 Tangent propagation . . . . . . . . . . . . . . . . . . . . . 263 5.5.5 Training with transformed data . . . . . . . . . . . . . . . . 265 5.5.6 Convolutional networks . . . . . . . . . . . . . . . . . . . 267 5.5.7 Soft weight sharing . . . . . . . . . . . . . . . . . . . . . . 269 5.6 Mixture Density Networks . . . . . . . . . . . . . . . . . . . . . . 272 5.7 Bayesian Neural Networks . . . . . . . . . . . . . . . . . . . . . . 277 5.7.1 Posterior parameter distribution . . . . . . . . . . . . . . . 278 5.7.2 Hyperparameter optimization . . . . . . . . . . . . . . . . 280 5.7.3 Bayesian neural networks for classification . . . . . . . . . 281 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 6 Kernel Methods 291 6.1 Dual Representations . . . . . . . . . . . . . . . . . . . . . . . . . 293 6.2 Constructing Kernels . . . . . . . . . . . . . . . . . . . . . . . . . 294 6.3 Radial Basis Function Networks . . . . . . . . . . . . . . . . . . . 299 6.3.1 Nadaraya-Watson model . . . . . . . . . . . . . . . . . . . 301 6.4 Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 303 6.4.1 Linear regression revisited . . . . . . . . . . . . . . . . . . 304 6.4.2 Gaussian processes for regression . . . . . . . . . . . . . . 306 6.4.3 Learning the hyperparameters . . . . . . . . . . . . . . . . 311 6.4.4 Automatic relevance determination . . . . . . . . . . . . . 312 6.4.5 Gaussian processes for classification . . . . . . . . . . . . . 313 6.4.6 Laplace approximation . . . . . . . . . . . . . . . . . . . . 315 6.4.7 Connection to neural networks . . . . . . . . . . . . . . . . 319 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 7 Sparse Kernel Machines 325 7.1 Maximum Margin Classifiers . . . . . . . . . . . . . . . . . . . . 326 7.1.1 Overlapping class distributions . . . . . . . . . . . . . . . . 331 7.1.2 Relation to logistic regression . . . . . . . . . . . . . . . . 336 7.1.3 Multiclass SVMs . . . . . . . . . . . . . . . . . . . . . . . 338 7.1.4 SVMs for regression . . . . . . . . . . . . . . . . . . . . . 339 7.1.5 Computational learning theory . . . . . . . . . . . . . . . . 344 7.2 Relevance Vector Machines . . . . . . . . . . . . . . . . . . . . . 345 7.2.1 RVM for regression . . . . . . . . . . . . . . . . . . . . . . 345 7.2.2 Analysis of sparsity . . . . . . . . . . . . . . . . . . . . . . 349 7.2.3 RVM for classification . . . . . . . . . . . . . . . . . . . . 353 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 8 Graphical Models 359 8.1 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 360 8.1.1 Example: Polynomial regression . . . . . . . . . . . . . . . 362 8.1.2 Generative models . . . . . . . . . . . . . . . . . . . . . . 365 8.1.3 Discrete variables . . . . . . . . . . . . . . . . . . . . . . . 366 8.1.4 Linear-Gaussian models . . . . . . . . . . . . . . . . . . . 370 8.2 Conditional Independence . . . . . . . . . . . . . . . . . . . . . . 372 8.2.1 Three example graphs . . . . . . . . . . . . . . . . . . . . 373 8.2.2 D-separation . . . . . . . . . . . . . . . . . . . . . . . . . 378 8.3 Markov Random Fields . . . . . . . . . . . . . . . . . . . . . . . 383 8.3.1 Conditional independence properties . . . . . . . . . . . . . 383 8.3.2 Factorization properties . . . . . . . . . . . . . . . . . . . 384 8.3.3 Illustration: Image de-noising . . . . . . . . . . . . . . . . 387 8.3.4 Relation to directed graphs . . . . . . . . . . . . . . . . . . 390 8.4 Inference in Graphical Models . . . . . . . . . . . . . . . . . . . . 393 8.4.1 Inference on a chain . . . . . . . . . . . . . . . . . . . . . 394 8.4.2 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398 8.4.3 Factor graphs . . . . . . . . . . . . . . . . . . . . . . . . . 399 8.4.4 The sum-product algorithm . . . . . . . . . . . . . . . . . . 402 8.4.5 The max-sum algorithm . . . . . . . . . . . . . . . . . . . 411 8.4.6 Exact inference in general graphs . . . . . . . . . . . . . . 416 8.4.7 Loopy belief propagation . . . . . . . . . . . . . . . . . . . 417 8.4.8 Learning the graph structure . . . . . . . . . . . . . . . . . 418 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418 9 Mixture Models and EM 423 9.1 K-means Clustering . . . . . . . . . . . . . . . . . . . . . . . . . 424 9.1.1 Image segmentation and compression . . . . . . . . . . . . 428 9.2 Mixtures of Gaussians . . . . . . . . . . . . . . . . . . . . . . . . 430 9.2.1 Maximum likelihood . . . . . . . . . . . . . . . . . . . . . 432 9.2.2 EM for Gaussian mixtures . . . . . . . . . . . . . . . . . . 435 9.3 An Alternative View of EM . . . . . . . . . . . . . . . . . . . . . 439 9.3.1 Gaussian mixtures revisited . . . . . . . . . . . . . . . . . 441 9.3.2 Relation to K-means . . . . . . . . . . . . . . . . . . . . . 443 9.3.3 Mixtures of Bernoulli distributions . . . . . . . . . . . . . . 444 9.3.4 EM for Bayesian linear regression . . . . . . . . . . . . . . 448 9.4 The EM Algorithm in General . . . . . . . . . . . . . . . . . . . . 450 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455 10 Approximate Inference 461 10.1 Variational Inference . . . . . . . . . . . . . . . . . . . . . . . . . 462 10.1.1 Factorized distributions . . . . . . . . . . . . . . . . . . . . 464 10.1.2 Properties of factorized approximations . . . . . . . . . . . 466 10.1.3 Example: The univariate Gaussian . . . . . . . . . . . . . . 470 10.1.4 Model comparison . . . . . . . . . . . . . . . . . . . . . . 473 10.2 Illustration: Variational Mixture of Gaussians . . . . . . . . . . . . 474 10.2.1 Variational distribution . . . . . . . . . . . . . . . . . . . . 475 10.2.2 Variational lower bound . . . . . . . . . . . . . . . . . . . 481 10.2.3 Predictive density . . . . . . . . . . . . . . . . . . . . . . . 482 10.2.4 Determining the number of components . . . . . . . . . . . 483 10.2.5 Induced factorizations . . . . . . . . . . . . . . . . . . . . 485 10.3 Variational Linear Regression . . . . . . . . . . . . . . . . . . . . 486 10.3.1 Variational distribution . . . . . . . . . . . . . . . . . . . . 486 10.3.2 Predictive distribution . . . . . . . . . . . . . . . . . . . . 488 10.3.3 Lower bound . . . . . . . . . . . . . . . . . . . . . . . . . 489 10.4 Exponential Family Distributions . . . . . . . . . . . . . . . . . . 490 10.4.1 Variational message passing . . . . . . . . . . . . . . . . . 491 10.5 Local Variational Methods . . . . . . . . . . . . . . . . . . . . . . 493 10.6 Variational Logistic Regression . . . . . . . . . . . . . . . . . . . 498 10.6.1 Variational posterior distribution . . . . . . . . . . . . . . . 498 10.6.2 Optimizing the variational parameters . . . . . . . . . . . . 500 10.6.3 Inference of hyperparameters . . . . . . . . . . . . . . . . 502 10.7 Expectation Propagation . . . . . . . . . . . . . . . . . . . . . . . 505 10.7.1 Example: The clutter problem . . . . . . . . . . . . . . . . 511 10.7.2 Expectation propagation on graphs . . . . . . . . . . . . . . 513 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517 11 Sampling Methods 523 11.1 Basic Sampling Algorithms . . . . . . . . . . . . . . . . . . . . . 526 11.1.1 Standard distributions . . . . . . . . . . . . . . . . . . . . 526 11.1.2 Rejection sampling . . . . . . . . . . . . . . . . . . . . . . 528 11.1.3 Adaptive rejection sampling . . . . . . . . . . . . . . . . . 530 11.1.4 Importance sampling . . . . . . . . . . . . . . . . . . . . . 532 11.1.5 Sampling-importance-resampling . . . . . . . . . . . . . . 534 11.1.6 Sampling and the EM algorithm . . . . . . . . . . . . . . . 536 11.2 Markov Chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . 537 11.2.1 Markov chains . . . . . . . . . . . . . . . . . . . . . . . . 539 11.2.2 The Metropolis-Hastings algorithm . . . . . . . . . . . . . 541 11.3 Gibbs Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 542 11.4 Slice Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546 11.5 The Hybrid Monte Carlo Algorithm . . . . . . . . . . . . . . . . . 548 11.5.1 Dynamical systems . . . . . . . . . . . . . . . . . . . . . . 548 11.5.2 Hybrid Monte Carlo . . . . . . . . . . . . . . . . . . . . . 552 11.6 Estimating the Partition Function . . . . . . . . . . . . . . . . . . 554 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556 12 Continuous Latent Variables 559 12.1 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . 561 12.1.1 Maximum variance formulation . . . . . . . . . . . . . . . 561 12.1.2 Minimum-error formulation . . . . . . . . . . . . . . . . . 563 12.1.3 Applications of PCA . . . . . . . . . . . . . . . . . . . . . 565 12.1.4 PCA for high-dimensional data . . . . . . . . . . . . . . . 569 12.2 Probabilistic PCA . . . . . . . . . . . . . . . . . . . . . . . . . . 570 12.2.1 Maximum likelihood PCA . . . . . . . . . . . . . . . . . . 574 12.2.2 EM algorithm for PCA . . . . . . . . . . . . . . . . . . . . 577 12.2.3 Bayesian PCA . . . . . . . . . . . . . . . . . . . . . . . . 580 12.2.4 Factor analysis . . . . . . . . . . . . . . . . . . . . . . . . 583 12.3 Kernel PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586 12.4 Nonlinear Latent Variable Models . . . . . . . . . . . . . . . . . . 591 12.4.1 Independent component analysis . . . . . . . . . . . . . . . 591 12.4.2 Autoassociative neural networks . . . . . . . . . . . . . . . 592 12.4.3 Modelling nonlinear manifolds . . . . . . . . . . . . . . . . 595 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599 13 Sequential Data 605 13.1 Markov Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607 13.2 Hidden Markov Models . . . . . . . . . . . . . . . . . . . . . . . 610 13.2.1 Maximum likelihood for the HMM . . . . . . . . . . . . . 615 13.2.2 The forward-backward algorithm . . . . . . . . . . . . . . 618 13.2.3 The sum-product algorithm for the HMM . . . . . . . . . . 625 13.2.4 Scaling factors . . . . . . . . . . . . . . . . . . . . . . . . 627 13.2.5 The Viterbi algorithm . . . . . . . . . . . . . . . . . . . . . 629 13.2.6 Extensions of the hidden Markov model . . . . . . . . . . . 631 13.3 Linear Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . 635 13.3.1 Inference in LDS . . . . . . . . . . . . . . . . . . . . . . . 638 13.3.2 Learning in LDS . . . . . . . . . . . . . . . . . . . . . . . 642 13.3.3 Extensions of LDS . . . . . . . . . . . . . . . . . . . . . . 644 13.3.4 Particle filters . . . . . . . . . . . . . . . . . . . . . . . . . 645 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646 14 Combining Models 653 14.1 Bayesian Model Averaging . . . . . . . . . . . . . . . . . . . . . . 654 14.2 Committees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655 14.3 Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657 14.3.1 Minimizing exponential error . . . . . . . . . . . . . . . . 659 14.3.2 Error functions for boosting . . . . . . . . . . . . . . . . . 661 14.4 Tree-based Models . . . . . . . . . . . . . . . . . . . . . . . . . . 663 14.5 Conditional Mixture Models . . . . . . . . . . . . . . . . . . . . . 666 14.5.1 Mixtures of linear regression models . . . . . . . . . . . . . 667 14.5.2 Mixtures of logistic models . . . . . . . . . . . . . . . . . 670 14.5.3 Mixtures of experts . . . . . . . . . . . . . . . . . . . . . . 672 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674 Appendix A Data Sets 677 Appendix B Probability Distributions 685 Appendix C Properties of Matrices 695 Appendix D Calculus of Variations 703 Appendix E LagrangeMultipliers 707 References 711
2022-04-28 16:33:51 8.06MB 模式识别 机器学习
1
Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way. The book provides an extensive theoretical account of the fundamental ideas underlying machine learning and the mathematical derivations that transform these principles into practical algorithms. Following a presentation of the basics of the field, the book covers a wide array of central topics that have not been addressed by previous textbooks. These include a discussion of the computational complexity of learning and the concepts of convexity and stability; important algorithmic paradigms including stochastic gradient descent, neural networks, and structured outputlearning; and emerging theoretical concepts such as the PAC-Bayes approach and compression-based bounds. Designed for an advanced undergraduate or beginning graduate course, the text makes the fundamentals and algorithms of machine learning accessible to students and nonexpert readers in statistics, computer science, mathematics, and engineering.
2022-04-28 16:24:43 2.48MB Machine Learning
1
During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for 'wide' data (p bigger than n), including multiple testing and false discovery rates.
2022-04-28 16:19:22 12.46MB 机器学习
1
(3rd Edition) Simon O. Haykin-Neural Networks and Learning Machines-Prentice Hall (2008).pdf
2022-04-28 16:11:09 13.71MB Neural Networks Learning Machines
1
作  者:MACKAY, DAVID 出版日期:2005-7-8 出 版 社:CAMBRIDGE UNIV PR
2022-04-28 16:02:33 8.43MB 信息论 学习算法
1