【课程简介】 本课程适合所有需要学习机器学习技术的同学,课件内容制作精细,由浅入深,适合入门或进行知识回顾。 本章为该课程的其中一个章节,如有需要可下载全部课程 全套资源下载地址:https://download.csdn.net/download/qq_27595745/85274948 【全部课程列表】 day01-机器学习概述、特征工程、机器学习算法 共127页.pptx day02-sklearn、knn、朴素贝叶斯、决策树、随机森林 共102页.pptx day03-线性回归、岭回归、逻辑回归、分类、聚类算法 共86页.pptx day04-Tensorflow基础与进阶 共74页.pptx day05-Tensorflow IO操作-队列和线程、文件读取、图片处理 共40页.pptx day06-Tensorflow、人工神经网络、卷积神经网络、图片识别 共65页.pptx day07-CIFAR图像分类 图像识别、分布式会话函数、分布式TensorFlow、推荐系统 共76页.pptx
2022-05-04 12:05:53 1.68MB 人工智能 机器学习 深度学习 文档资料
【课程简介】 本课程适合所有需要学习机器学习技术的同学,课件内容制作精细,由浅入深,适合入门或进行知识回顾。 本章为该课程的其中一个章节,如有需要可下载全部课程 全套资源下载地址:https://download.csdn.net/download/qq_27595745/85274948 【全部课程列表】 day01-机器学习概述、特征工程、机器学习算法 共127页.pptx day02-sklearn、knn、朴素贝叶斯、决策树、随机森林 共102页.pptx day03-线性回归、岭回归、逻辑回归、分类、聚类算法 共86页.pptx day04-Tensorflow基础与进阶 共74页.pptx day05-Tensorflow IO操作-队列和线程、文件读取、图片处理 共40页.pptx day06-Tensorflow、人工神经网络、卷积神经网络、图片识别 共65页.pptx day07-CIFAR图像分类 图像识别、分布式会话函数、分布式TensorFlow、推荐系统 共76页.pptx
2022-05-04 12:05:52 10.49MB 人工智能 机器学习 深度学习 文档资料
【课程简介】 本课程适合所有需要学习机器学习技术的同学,课件内容制作精细,由浅入深,适合入门或进行知识回顾。 本章为该课程的其中一个章节,如有需要可下载全部课程 全套资源下载地址:https://download.csdn.net/download/qq_27595745/85252312 【全部课程列表】 第1章 机器学习和统计学习 共75页.pptx 第2和12章 感知机和统计学习方法总结 共27页.pptx 第3章 k-近邻算法 共69页.pptx 第4章 贝叶斯分类器 共79页.pptx 第5章 决策树 共98页.pptx 第6章 Logistic回归 共75页.pptx 第7章 SVM及核函数 共159页.pptx 第8章 adaboost 共75页.pptx 第9章 EM算法 共48页.pptx 第10章 隐马尔科夫模型 共64页.pptx 第11章 条件随机场 共63页.pptx 第13章 无监督学习概论 共27页.pptx 第14章 聚类方法 共52页.pptx 第15章 奇异值分解 共66页.pptx 第16章 主成分分析 共67页.pptx 第17章 潜在语义
2022-05-04 12:05:49 4.07MB 机器学习 学习 文档资料 综合资源
【课程简介】 本课程适合所有需要学习机器学习技术的同学,课件内容制作精细,由浅入深,适合入门或进行知识回顾。 本章为该课程的其中一个章节,如有需要可下载全部课程 全套资源下载地址:https://download.csdn.net/download/qq_27595745/85252312 【全部课程列表】 第1章 机器学习和统计学习 共75页.pptx 第2和12章 感知机和统计学习方法总结 共27页.pptx 第3章 k-近邻算法 共69页.pptx 第4章 贝叶斯分类器 共79页.pptx 第5章 决策树 共98页.pptx 第6章 Logistic回归 共75页.pptx 第7章 SVM及核函数 共159页.pptx 第8章 adaboost 共75页.pptx 第9章 EM算法 共48页.pptx 第10章 隐马尔科夫模型 共64页.pptx 第11章 条件随机场 共63页.pptx 第13章 无监督学习概论 共27页.pptx 第14章 聚类方法 共52页.pptx 第15章 奇异值分解 共66页.pptx 第16章 主成分分析 共67页.pptx 第17章 潜在语义
2022-05-04 12:05:49 1.31MB 机器学习 学习 文档资料 综合资源
【课程简介】 本课程适合所有需要学习机器学习技术的同学,课件内容制作精细,由浅入深,适合入门或进行知识回顾。 本章为该课程的其中一个章节,如有需要可下载全部课程 全套资源下载地址:https://download.csdn.net/download/qq_27595745/85252312 【全部课程列表】 第1章 机器学习和统计学习 共75页.pptx 第2和12章 感知机和统计学习方法总结 共27页.pptx 第3章 k-近邻算法 共69页.pptx 第4章 贝叶斯分类器 共79页.pptx 第5章 决策树 共98页.pptx 第6章 Logistic回归 共75页.pptx 第7章 SVM及核函数 共159页.pptx 第8章 adaboost 共75页.pptx 第9章 EM算法 共48页.pptx 第10章 隐马尔科夫模型 共64页.pptx 第11章 条件随机场 共63页.pptx 第13章 无监督学习概论 共27页.pptx 第14章 聚类方法 共52页.pptx 第15章 奇异值分解 共66页.pptx 第16章 主成分分析 共67页.pptx 第17章 潜在语义
2022-05-04 12:05:47 1.57MB 机器学习 学习 文档资料 人工智能
【课程简介】 本课程适合所有需要学习机器学习技术的同学,课件内容制作精细,由浅入深,适合入门或进行知识回顾。 本章为该课程的其中一个章节,如有需要可下载全部课程 全套资源下载地址:https://download.csdn.net/download/qq_27595745/85252312 【全部课程列表】 第1章 机器学习和统计学习 共75页.pptx 第2和12章 感知机和统计学习方法总结 共27页.pptx 第3章 k-近邻算法 共69页.pptx 第4章 贝叶斯分类器 共79页.pptx 第5章 决策树 共98页.pptx 第6章 Logistic回归 共75页.pptx 第7章 SVM及核函数 共159页.pptx 第8章 adaboost 共75页.pptx 第9章 EM算法 共48页.pptx 第10章 隐马尔科夫模型 共64页.pptx 第11章 条件随机场 共63页.pptx 第13章 无监督学习概论 共27页.pptx 第14章 聚类方法 共52页.pptx 第15章 奇异值分解 共66页.pptx 第16章 主成分分析 共67页.pptx 第17章 潜在语义
2022-05-04 12:05:46 3.76MB 支持向量机 机器学习 学习 文档资料
【课程简介】 本课程适合所有需要学习机器学习技术的同学,课件内容制作精细,由浅入深,适合入门或进行知识回顾。 本章为该课程的其中一个章节,如有需要可下载全部课程 全套资源下载地址:https://download.csdn.net/download/qq_27595745/85252312 【全部课程列表】 第1章 机器学习和统计学习 共75页.pptx 第2和12章 感知机和统计学习方法总结 共27页.pptx 第3章 k-近邻算法 共69页.pptx 第4章 贝叶斯分类器 共79页.pptx 第5章 决策树 共98页.pptx 第6章 Logistic回归 共75页.pptx 第7章 SVM及核函数 共159页.pptx 第8章 adaboost 共75页.pptx 第9章 EM算法 共48页.pptx 第10章 隐马尔科夫模型 共64页.pptx 第11章 条件随机场 共63页.pptx 第13章 无监督学习概论 共27页.pptx 第14章 聚类方法 共52页.pptx 第15章 奇异值分解 共66页.pptx 第16章 主成分分析 共67页.pptx 第17章 潜在语义
2022-05-04 12:05:45 1.52MB 机器学习 学习 文档资料 人工智能
【课程简介】 本课程适合所有需要学习机器学习技术的同学,课件内容制作精细,由浅入深,适合入门或进行知识回顾。 本章为该课程的其中一个章节,如有需要可下载全部课程 全套资源下载地址:https://download.csdn.net/download/qq_27595745/85252312 【全部课程列表】 第1章 机器学习和统计学习 共75页.pptx 第2和12章 感知机和统计学习方法总结 共27页.pptx 第3章 k-近邻算法 共69页.pptx 第4章 贝叶斯分类器 共79页.pptx 第5章 决策树 共98页.pptx 第6章 Logistic回归 共75页.pptx 第7章 SVM及核函数 共159页.pptx 第8章 adaboost 共75页.pptx 第9章 EM算法 共48页.pptx 第10章 隐马尔科夫模型 共64页.pptx 第11章 条件随机场 共63页.pptx 第13章 无监督学习概论 共27页.pptx 第14章 聚类方法 共52页.pptx 第15章 奇异值分解 共66页.pptx 第16章 主成分分析 共67页.pptx 第17章 潜在语义
2022-05-04 12:05:44 2.04MB 机器学习 学习 文档资料 人工智能
【课程简介】 本课程适合所有需要学习机器学习技术的同学,课件内容制作精细,由浅入深,适合入门或进行知识回顾。 本章为该课程的其中一个章节,如有需要可下载全部课程 全套资源下载地址:https://download.csdn.net/download/qq_27595745/85252312 【全部课程列表】 第1章 机器学习和统计学习 共75页.pptx 第2和12章 感知机和统计学习方法总结 共27页.pptx 第3章 k-近邻算法 共69页.pptx 第4章 贝叶斯分类器 共79页.pptx 第5章 决策树 共98页.pptx 第6章 Logistic回归 共75页.pptx 第7章 SVM及核函数 共159页.pptx 第8章 adaboost 共75页.pptx 第9章 EM算法 共48页.pptx 第10章 隐马尔科夫模型 共64页.pptx 第11章 条件随机场 共63页.pptx 第13章 无监督学习概论 共27页.pptx 第14章 聚类方法 共52页.pptx 第15章 奇异值分解 共66页.pptx 第16章 主成分分析 共67页.pptx 第17章 潜在语义
2022-05-04 12:05:43 3.16MB 机器学习 学习 文档资料 人工智能
【课程简介】 本课程适合所有需要学习机器学习技术的同学,课件内容制作精细,由浅入深,适合入门或进行知识回顾。 本章为该课程的其中一个章节,如有需要可下载全部课程 全套资源下载地址:https://download.csdn.net/download/qq_27595745/85252312 【全部课程列表】 第1章 机器学习和统计学习 共75页.pptx 第2和12章 感知机和统计学习方法总结 共27页.pptx 第3章 k-近邻算法 共69页.pptx 第4章 贝叶斯分类器 共79页.pptx 第5章 决策树 共98页.pptx 第6章 Logistic回归 共75页.pptx 第7章 SVM及核函数 共159页.pptx 第8章 adaboost 共75页.pptx 第9章 EM算法 共48页.pptx 第10章 隐马尔科夫模型 共64页.pptx 第11章 条件随机场 共63页.pptx 第13章 无监督学习概论 共27页.pptx 第14章 聚类方法 共52页.pptx 第15章 奇异值分解 共66页.pptx 第16章 主成分分析 共67页.pptx 第17章 潜在语义
2022-05-04 12:05:42 1.16MB 机器学习 学习 文档资料 人工智能