基于液压式传动技术和单片机的垃圾自动清扫机设计.pdf
2021-07-12 17:46:21 1.15MB 单片机 硬件开发 硬件程序 参考文献
包含大量单标签 垃圾数据集,全部垃圾数据集请私聊我,三种类型(垃圾数据集数量不相同)
2021-07-11 20:00:44 374KB 数据集 垃圾 单标签
1
这是一个手机垃圾清理工具(清浊),可以进行常规的清理、碎片化清理、卸载残留文件清理、存储空间分析、应用内核删除等操作。该工具超轻量,没有广告。
2021-07-10 19:06:26 2.37MB android 垃圾清理 残留文件清理 超轻量
1
thinkphp响应式环保垃圾桶网站模板+前后端源码,本模板自带eyoucms内核,无需再下载eyou系统,原创设计、手工书写DIV+CSS,完美兼容IE7+、Firefox、Chrome、360浏览器等;主流浏览器;结构容易优化;多终端均可正常预览。
垃圾分类训练数据集,每张垃圾图片带有同名txt标签文件,共14802张图。在机器学习中会把数据分为训练集、测试集和检验集。可以用于第七届工训垃圾分类赛项
2021-07-09 11:15:16 540.97MB 垃圾识别分类 数据集 生活垃圾 工程训练
1
垃圾分类数据集 我的课程作业用到的一个数据集 相应的博客:【垃圾邮件分类(trec06c数据集)】https://blog.csdn.net/qq_39321513/article/details/112021355#comments_17424986
2021-07-08 19:06:04 89.49MB 垃圾分类数据集
1
基于CNN的中文文本分类算法(可应用于垃圾邮件过滤、情感分析等场景) 利用word2vec先获取中文测试数据集中各个字的向量表达,再输入卷积网络进行分类。 运行方法 训练 run python train.py to train the cnn with the spam and ham files (only support chinese!) (change the config filepath in FLAGS to your own) 在tensorboard上查看summaries run tensorboard --logdir /{PATH_TO_CODE}/runs/{TIME_DIR}/summaries/ to view summaries in web view 测试、分类 run python eval.py --checkpoint_dir /{PATH_TO_CODE/runs/{TIME_DIR}/checkpoints} 如果需要分类自己提供的文件,请更改相关输入参数 如果需要测试准确率,需要指定对应的标签文件(input_label_file): python eval.py --input_label_file /PATH_TO_INPUT_LABEL_FILE 说明:input_label_file中的每一行是0或1,需要与input_text_file中的每一行对应。 在eval.py中,如果有这个对照标签文件input_label_file,则会输出预测的准确率 推荐运行环境 python 2.7.13 :: Anaconda 4.3.1 (64-bit) tensorflow 1.0.0 gensim 1.0.1 Ubuntu16.04 64bit
2021-07-08 15:02:43 13.32MB 中文文本
1
比赛需要故只开源了粗劣的第一个版本demo实现,第二版本改进使用yoloV3模型进行垃圾分类检测,机器臂分拣垃圾,垃圾分类数据集重新收集,并有微信小程序的用户查询垃圾分类及反馈机制 注意看ReadMe文件,注意看ReadMe文件,注意看ReadMe文件 B站视频介绍地址:https://www.bilibili.com/video/av80830870 交流群:1074171553 题主双非师范院校2021考研狗,如果你觉得这个小项目有帮助到你,请为项目点一个star,不管是考试型选手毕设项目被迫营业还是直接拿去二开参加比赛,这些都没问题,开源项目就是人人为我我为人人,但请尊重他人劳动成果,大家都是同龄人.心上无垢,林间有风. 材料清单 树莓派 1个 pca9685 16路舵机驱动板 1个 7寸可触摸显示屏一个 MG996R 舵机4个 垃圾桶4个 usb免驱动摄像头1个 树莓派GPIO扩展板转接线柱1个 硅胶航模导线若干 环境需求 1.开发环境 神经网络搭建—python 依赖 tensorflow,keras 训练图片来源华为云2019垃圾分类大赛提供 训练图片地址:https://developer.huaweicloud.com/hero/forum.php?mod=viewthread&tid=24106 下载图片文件后将文件解压覆盖为 garbage_classify 放入 垃圾分类-本地训练/根目录 神经网络开源模型--- resnet50 models 目录需要手动下载resnet50 的模型文件放入 resnet50模型文件名:resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5 百度就可以找到下载放入即可:https://github.com/fchollet/deep-learning-models/releases/download/v0.2/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5 2.运行开发环境 进入 "垃圾分类-本地训练"目录 环境初始化 python3 安装框架flaskpip3 install flask 安装tensorflow,keras等依赖 pip3 install tensorflow==1.13.1 pip3 install keras==2.3.1 运行 1.命令python3 train.py开启训练 2.命令python3 predict_local.py开启输入图片测试 3. 训练服务模型部署 进入 "垃圾分类-服务部署"目录 output_model 目录存放的是本地训练完成导出的h5模型文件 models 目录需要手动下载resnet50 的模型文件放入 resnet50模型文件名:resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5 百度就可以找到下载放入即可:https://github.com/fchollet/deep-learning-models/releases/download/v0.2/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5 环境初始化 安装框架flaskpip3 install flask 安装tensorflow,keras等依赖 pip3 install tensorflow==1.13.1 pip3 install keras==2.3.1 运行 1.命令python3 run.py开启窗口本地调试 2.命令python3 flask_sever.py开启服务部署 3.命令sh ./start.sh开启后台运行服务部署 4.树莓派界面搭建 基于nodejs electron-vue 强烈建议使用cnpm来安装nodejs库 进入 "树莓派端/garbage_desktop"目录 安装依赖 cnpm install 开发模式 cnpm run dev 打包发布 cnpm run build 5.树莓派端flask-api接口操作硬件 进入"进入 "树莓派端/garbage_app_sever"目录" 注意树莓派应该开启I2C,确保pca9685 I2C方式接入后可显示地址 命令:i2cdetect -y 1 查看 地址项 0x40是否已经接入树莓派 运行 python3 app_sever.py 或者 sh start.sh 启动 若提示缺少依赖: pip3 install adafruit-pca9685 pip3 install flask
2021-07-08 11:15:29 112.44MB 树莓派 垃圾分类识别 物联网
某某省某某市某某市城市道路生活垃圾清扫保洁收运、转运和焚烧发电处理PPP项目财政承受能力报告..pdf
2021-07-08 11:01:23 1.64MB 1
去清理电脑垃圾吧!
2021-07-08 09:00:41 604B 清理垃圾 bat shell
1