RBF 神经网络(激活函数的中心和分布随机选择) 参数(K:内核数) RBFNN 有 5 个优化参数: 1- 隐藏层和输出层之间的权重。 2- 激活函数。 3- 激活函数的中心。 4- 激活函数的分布。 5- 隐藏神经元的数量。 隐藏层和输出层之间的权重使用 Moore-Penrose 广义伪逆计算。 该算法克服了传统梯度算法中的许多问题,如停止标准、学习率、时期数和局部最小值。 由于其较短的训练时间和泛化能力,适合实时应用。 选择的径向基函数通常是用于模式识别应用的高斯核。 通常激活函数的中心和分布应该具有与数据相似的特征。 这里,高斯分布的中心和宽度是随机选择的。 基于通用逼近理论中心和激活函数的分布是不确定的,如果隐藏神经元数量足够多,可以说具有足够数量隐藏神经元的单隐藏层前馈网络可以将任何函数逼近任意级别的准确性。
2022-05-07 14:59:50
4KB
matlab
1