摘要
生物医学数据收集的最新进展允许收集大量数据集,测量数千到数百万个单细胞中的数千个特征。这些数据有可能以以前不可能的分辨率推进我们对生物机制的理解。然而,了解这种规模和类型数据的方法很少。尽管神经网络在监督学习问题上取得了巨大进步,但要使它们对更难表示监督的数据中的发现成为有用,还有很多工作要做。神经网络的灵活性和表现力有时会成为这些监督较少的领域障碍,从生物医学数据中提取知识就是这种情况。在生物数据中更常见的一种先验知识以几何约束的形式出现。
在本文中,我们旨在利用这些几何知识来创建可扩展和可解释的模型来理解这些数据。将几何先验编码到神经网络和图模型中,使我们能够描述模型的解决方案,因为它们与图信号处理和最优传输领域相关。这些链接使我们能够理解和解释这种数据类型。我们将这项工作分为三个部分。第一个借用图信号处理的概念,通过约束和结构化架构来构建更具可解释性和性能的神经网络。第二个借鉴了最优传输理论,有效地进行异常检测和轨迹推断,并有理论保证。第三个研究如何比较基础流形上的分布,这可用于了解不同的扰动或条件之间的关系。为此,我们设计了一种基于联合细胞图上扩散的最佳传输的有效近似
2022-04-30 09:09:29
21.87MB
神经网络
1